Show simple item record

dc.contributor.authorBelaustegi Ituarte, Yolanda
dc.contributor.authorPanto, Fabiola
dc.contributor.authorUrbina Moreno, Leire
dc.contributor.authorCorcuera Maeso, María Ángeles
dc.contributor.authorEceiza Mendiguren, María Aranzazu
dc.contributor.authorPalella, Alessandra
dc.contributor.authorTriolo, Claudia
dc.contributor.authorSantangelo, Saveria
dc.date.accessioned2021-02-10T08:50:49Z
dc.date.available2021-02-10T08:50:49Z
dc.date.issued2020-10-15
dc.identifier.citationDesalination 492 : (2020) // Article ID 114596es_ES
dc.identifier.issn0011-9164
dc.identifier.issn1873-4464
dc.identifier.urihttp://hdl.handle.net/10810/50126
dc.description.abstractElectrosorptive desalination is a very simple and appealing approach to satisfy the increasing demand for drinking water. The large-scale application of this technology calls for the development of easy-to-produce, cheap and highly performing electrode materials and for the identification and tailoring of their most influential properties, as well. Here, biosynthesised bacterial cellulose is used as a carbon precursor for the production of three-dimensional nanostructures endowed with hierarchically porous architecture and different density and type of intrinsic and hetero-atom induced lattice defects. The produced materials exhibit unprecedented desalination capacities for carbon-based electrodes. At an initial concentration of 585 mg L-1 (10 mmol L-1), they are able to remove from 55 to 79 mg g(-1) of salt; as the initial concentration rises to 11.7 g L-1 (200 mmol L-1), their salt adsorption capacity reaches values ranging between 1.03 and 1.35 g g(-1). The results of the thorough material characterisation by complementary techniques evidence that the relative amount of oxygenated surface functional species enhancing the electrode wettability play a crucial role at lower NaCl concentrations, whereas the availability of active non-sp(2) defect sites for adsorption is mainly influential at higher salt concentrations.es_ES
dc.description.sponsorshipL.U., M.A.C. and A.E. gratefully thank GIU18/216-UPV/EHU Research Group for the financial support to their work.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectbacterial cellulosees_ES
dc.subjectRaman spectroscopyes_ES
dc.subjectlattice defectses_ES
dc.subjectcapacitive deionizationes_ES
dc.subjecthierarchically porous carbones_ES
dc.subjectreduced graphene oxidees_ES
dc.subjectcomposite electrodeses_ES
dc.subjectfunctional-groupses_ES
dc.subjectamorphous-carbones_ES
dc.subjection storagees_ES
dc.subjectmetal-oxidees_ES
dc.subjectperformancees_ES
dc.subjectRamanes_ES
dc.subjectsurfacees_ES
dc.titleBacterial-Cellulose-Derived Carbonaceous Electrode Materials for Water Desalination Via Capacitive Method: the Crucial Role of Defect Siteses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www-sciencedirect-com.ehu.idm.oclc.org/science/article/pii/S0011916420312741es_ES
dc.identifier.doi10.1016/j.desal.2020.114596
dc.departamentoesIngeniería química y del medio ambientees_ES
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)
Except where otherwise noted, this item's license is described as This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)