dc.contributor.author | Chen, Jiayi | |
dc.contributor.author | Martín, Pablo | |
dc.contributor.author | Xu, Zhiyuan | |
dc.contributor.author | Manzano Moro, Hegoi  | |
dc.contributor.author | Sánchez Dolado, Jorge | |
dc.contributor.author | Ye, Guang | |
dc.date.accessioned | 2021-05-18T07:50:51Z | |
dc.date.available | 2021-05-18T07:50:51Z | |
dc.date.issued | 2021-04 | |
dc.identifier.citation | Cement And Concrete Research 142 : (2021) // Article ID 106377 | es_ES |
dc.identifier.issn | 0008-8846 | |
dc.identifier.issn | 1873-3948 | |
dc.identifier.uri | http://hdl.handle.net/10810/51458 | |
dc.description.abstract | Portland cement is the most produced material in the world. The hydration process of cement consists of a group of complex chemical reactions. In order to investigate the mechanism of cement hydration, it is vital to study the hydration of each phase separately. An integrated model is proposed in this paper to simulate the dissolution of alite under different hydrodynamic conditions at microscale, coupling Kinetic Monte Carlo model (KMC), Lattice Boltzmann method (LBM) and diffusion boundary layer (DBL). The dissolution of alite is initialised with KMC. Two Multiple-relaxation-time (MRT) LB models are used to simulate the fluid flow and transport of ions, respectively. For solid-liquid interface, DBL is adapted to calculate the concentration gradient and dissolution flux. The model is validated with experiment from literature. The simulation results show good agreements with the results published in the literature. | es_ES |
dc.description.sponsorship | The authors would like to thank the China Scholarship Council (CSC) for the financial support for this work | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | cement hydration | es_ES |
dc.subject | dissolution simulation | es_ES |
dc.subject | lattice boltzmann method | es_ES |
dc.subject | Monte Carlo simulation | es_ES |
dc.subject | diffusion boundary layer | es_ES |
dc.title | A Dissolution Model of Alite Coupling Surface Topography and Ions Transport under Different Hydrodynamics Conditions at Microscale | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | This is an open access article distributed under the terms of the Creative Commons CC-BY license | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://www-sciencedirect-com.ehu.idm.oclc.org/science/article/pii/S0008884621000260?via%3Dihub#! | es_ES |
dc.identifier.doi | 10.1016/j.cemconres.2021.106377 | |
dc.departamentoes | Física | es_ES |
dc.departamentoes | Física de materiales | es_ES |
dc.departamentoeu | Fisika | es_ES |
dc.departamentoeu | Materialen fisika | es_ES |