Show simple item record

dc.contributor.authorIvchenkov, D. V.
dc.contributor.authorKuzmin, Peter I.
dc.contributor.authorGalimzyanov, T. R.
dc.contributor.authorShnyrova Zhadan, Anna ORCID
dc.contributor.authorBashkirov, Pavel V.
dc.contributor.authorFrolov, Vadim
dc.date.accessioned2021-10-20T08:28:34Z
dc.date.available2021-10-20T08:28:34Z
dc.date.issued2021-10-01
dc.identifier.citationBiochimica Et Biophysica Acta-Biomembranes 1863(10) : (2021) // Article ID 183677es_ES
dc.identifier.issn0005-2736
dc.identifier.issn1879-2642
dc.identifier.urihttp://hdl.handle.net/10810/53493
dc.description.abstractMembrane nanotubes (NTs) and their networks play an important role in intracellular membrane transport and intercellular communications. The transport characteristics of the NT lumen resemble those of conventional solid-state nanopores. However, unlike the rigid pores, the soft membrane wall of the NT can be deformed by forces driving the transport through the NT lumen. This intrinsic coupling between the NT geometry and transport properties remains poorly explored. Using synchronized fluorescence microscopy and conductance measurements, we revealed that the NT shape was changed by both electric and hydrostatic forces driving the ionic and solute fluxes through the NT lumen. Far from the shape instability, the strength of the force effect is determined by the lateral membrane tension and is scaled with membrane elasticity so that the NT can be operated as a linear elastic sensor. Near shape instabilities, the transport forces triggered large-scale shape transformations, both stochastic and periodic. The periodic oscillations were coupled to a vesicle passage along the NT axis, resembling peristaltic transport. The oscillations were parametrically controlled by the electric field, making NT a highly nonlinear nanofluidic circuitry element with biological and technological implications.es_ES
dc.description.sponsorshipThis work was partially supported by NIGMS of the National Institutes of Health under award R01GM121725, RYC-2014-01419 to A.V.S.; Spanish Ministry of Science, Innovation and Universities grants PGC2018-099971-B-I00 and EUR2019-103830 to A.V.S.; Basque Government grant IT1270-19; and the Ministry of Science and Higher Education of the Russian Federation to P.I.K. and G.T.R.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/RYC-2014-01419es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PGC2018-099971-B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectmembrane elasticityes_ES
dc.subjectmembrane nanotubees_ES
dc.subjectnanofluidic transportes_ES
dc.subjectelectro-actuationes_ES
dc.subjectshape bistabilityes_ES
dc.subjectelectrophoretic transportes_ES
dc.subjectcurvaturees_ES
dc.subjectnetworkses_ES
dc.subjectproteinses_ES
dc.subjectmodeles_ES
dc.subjectgenerationes_ES
dc.subjecttemplateses_ES
dc.subjectdynamicses_ES
dc.subjectfissiones_ES
dc.titleNonlinear material and ionic transport through membrane nanotubeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www-sciencedirect-com.ehu.idm.oclc.org/science/article/pii/S0005273621001279?via%3Dihubes_ES
dc.identifier.doi10.1016/j.bbamem.2021.183677
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)