Itemaren erregistro erraza erakusten du
A Comparative Analysis of Human Behavior Prediction Approaches in Intelligent Environments
dc.contributor.author | Almeida, Aitor | |
dc.contributor.author | Bermejo Fernández, Unai | |
dc.contributor.author | Bilbao Jayo, Aritz | |
dc.contributor.author | Azkune Galparsoro, Gorka | |
dc.contributor.author | Aguilera, Unai | |
dc.contributor.author | Emaldi, Mikel | |
dc.contributor.author | Dornaika, Fadi | |
dc.contributor.author | Arganda Carreras, Ignacio | |
dc.date.accessioned | 2022-02-18T18:37:52Z | |
dc.date.available | 2022-02-18T18:37:52Z | |
dc.date.issued | 2022-01-18 | |
dc.identifier.citation | Sensors 22(3) : (2022) // Article ID 701 | es_ES |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10810/55525 | |
dc.description.abstract | Behavior modeling has multiple applications in the intelligent environment domain. It has been used in different tasks, such as the stratification of different pathologies, prediction of the user actions and activities, or modeling the energy usage. Specifically, behavior prediction can be used to forecast the future evolution of the users and to identify those behaviors that deviate from the expected conduct. In this paper, we propose the use of embeddings to represent the user actions, and study and compare several behavior prediction approaches. We test multiple model (LSTM, CNNs, GCNs, and transformers) architectures to ascertain the best approach to using embeddings for behavior modeling and also evaluate multiple embedding retrofitting approaches. To do so, we use the Kasteren dataset for intelligent environments, which is one of the most widely used datasets in the areas of activity recognition and behavior modeling. | es_ES |
dc.description.sponsorship | This work was carried out with the financial support of FuturAAL-Ego (RTI2018-101045-A-C22) and FuturAAL-Context (RTI2018-101045-B-C21) granted by Spanish Ministry of Science, Innovation and Universities. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/RTI2018-101045-A-C22 | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/RTI2018-101045-B-C21 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | user behavior prediction | es_ES |
dc.subject | behavior modeling | es_ES |
dc.subject | transformers | es_ES |
dc.subject | attention | es_ES |
dc.subject | embeddingss | es_ES |
dc.subject | graph neural networks | es_ES |
dc.subject | knowledge graphs | es_ES |
dc.subject | recurrent neural networks | es_ES |
dc.subject | convolutional neural networks | es_ES |
dc.subject | intelligent environment | es_ES |
dc.title | A Comparative Analysis of Human Behavior Prediction Approaches in Intelligent Environments | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2022-02-11T14:47:02Z | |
dc.rights.holder | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/22/3/701 | es_ES |
dc.identifier.doi | 10.3390/s22030701 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala |
Item honetako fitxategiak
Item hau honako bilduma honetan/hauetan agertzen da
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da:© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).