UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Tesis Doctorales
  • TD-Ingeniería y Arquitectura
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Tesis Doctorales
  • TD-Ingeniería y Arquitectura
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ni-based catalysts derived from nickel aluminate spinel for hydrogen production by Aqueous-Phase Reforming of glycerol

Thumbnail
View/Open
Tesis Doctoral (15.85Mb)
Date
2022-04-04
Author
Morales Marín, Adriana ORCID
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

URI
http://hdl.handle.net/10810/56393
Abstract
Hydrogen, as an energy carrier, plays an important role in decarbonizing the energy system. Among different alternatives, Aqueous-Phase Reforming (APR) of biomass-derived feedstock, such as glycerol, is a promising catalytic process to produce H2. In order to provide high selectivity and reaction rates, under mild operating conditions (235 ºC/35 bar), the APR catalyst must be effective in breaking C-C, C-H, and O-H bonds, as well as active for the WGS reaction. Besides, it should present resistance to deactivation under the harsh hydrothermal conditions of the APR.In this thesis, the potential of nickel aluminate spinel (NiAl2O4) as a catalytic precursor is determined. The effect of the reduction temperature on the catalytic precursor is studied establishing correlations between the physicochemical properties and the catalytic performance. Complementarily, two strategies for the NiAl2O4 optimization are examined. First, the addition of Mg and Ce surface promoters, and then, the alternative synthesis by the novel nanocasting method. Upon reduction, the spinel precursor allows the formation of small (< 14 nm) and stable metallic Ni particles. Besides, its adequate stability leads to stable H2 yield during long term runs (50 h TOS) and shows potential to be used in the APR.
Collections
  • TD-Ingeniería y Arquitectura

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka