Mostrar el registro sencillo del ítem

dc.contributor.authorElexpe, Ane
dc.contributor.authorSánchez-Sánchez, Laura
dc.contributor.authorTolentino-Cortez, Tarson
dc.contributor.authorAstigarraga Arribas, Egoitz
dc.contributor.authorTorrecilla Sesma, María ORCID
dc.contributor.authorBarreda Gómez, Gabriel
dc.date.accessioned2022-05-30T09:50:22Z
dc.date.available2022-05-30T09:50:22Z
dc.date.issued2022-04-23
dc.identifier.citationBiomedicines 10(5) : (2022) // Article ID 980es_ES
dc.identifier.issn2227-9059
dc.identifier.urihttp://hdl.handle.net/10810/56786
dc.description.abstractDrug side effects are one of the main reasons for treatment withdrawal during clinical trials. Reactive oxygen species formation is involved in many of the drug side effects, mainly by interacting with the components of the cellular respiration. Thus, the early detection of these effects in the drug discovery process is a key aspect for the optimization of pharmacological research. To this end, the superoxide formation of a series of drugs and compounds with antidepressant, antipsychotic, anticholinergic, narcotic, and analgesic properties was evaluated in isolated bovine heart membranes and on cell membrane microarrays from a collection of human tissues, together with specific inhibitors of the mitochondrial electron transport chain. Fluphenazine and PB28 promoted similar effects to those of rotenone, but with lower potency, indicating a direct action on mitochondrial complex I. Moreover, nefazodone, a drug withdrawn from the market due to its mitochondrial hepatotoxic effects, evoked the highest superoxide formation in human liver cell membranes, suggesting the potential of this technology to anticipate adverse effects in preclinical phases.es_ES
dc.description.sponsorshipThis work has been partially supported by a grant from the Ministry of Economy and Competitiveness (DIN2019-010902) and the Basque Government Department of Economic Development, Sustainability and Environment (Bikaintek program: 48-AF-W2-2019-00007).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectmicroarrayes_ES
dc.subjectsuperoxidees_ES
dc.subjectantipsychotices_ES
dc.subjectmitochondriaes_ES
dc.titleAnalysis of Mitochondrial Function in Cell Membranes as Indicator of Tissue Vulnerability to Drugs in Humanses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2022-05-27T13:36:51Z
dc.rights.holder2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-9059/10/5/980/htmes_ES
dc.identifier.doi10.3390/biomedicines10050980
dc.departamentoesFarmacología
dc.departamentoeuFarmakologia


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).