Show simple item record

dc.contributor.authorRejc, Luka
dc.contributor.authorGómez Vallejo, Vanessa
dc.contributor.authorJoya, Ana
dc.contributor.authorArsequell, Gemma
dc.contributor.authorEgimendia Tolaretxipi, Ander
dc.contributor.authorCastellnou Arenas, Pilar
dc.contributor.authorRíos Anglada, Xabier
dc.contributor.authorCossío Arrieta, Unai
dc.contributor.authorBaz Maldonado, Zuriñe
dc.contributor.authorIglesias, Leyre
dc.contributor.authorCapetillo González de Zarate, Estibaliz
dc.contributor.authorRamos Cabrer, Pedro
dc.contributor.authorMartín Muñoz, Abraham
dc.contributor.authorLlop Roig, Jordi ORCID
dc.date.accessioned2022-09-01T12:51:48Z
dc.date.available2022-09-01T12:51:48Z
dc.date.issued2022
dc.identifier.citationAlzheimer's Research & Therapy 14 : (2022) // Article ID 80es_ES
dc.identifier.issn1758-9193
dc.identifier.urihttp://hdl.handle.net/10810/57410
dc.description.abstract[EN] Background: Validation of new biomarkers of Alzheimer disease (AD) is crucial for the successful development and implementation of treatment strategies. Additional to traditional AT(N) biomarkers, neuroinflammation biomarkers, such as translocator protein (TSPO) and cystine/glutamine antiporter system (x(c)(-)), could be considered when assessing AD progression. Herein, we report the longitudinal investigation of [F-18]DPA-714 and [F-18]FSPG for their ability to detect TSPO and x(c)(-) biomarkers, respectively, in the 5xFAD mouse model for AD. Methods: Expression of TSPO and x(c)(-) system was assessed longitudinally (2-12 months of age) on 5xFAD mice and their respective controls by positron emission tomography (PET) imaging using radioligands [F-18]DPA-714 and [F-18]FSPG. In parallel, in the same mice, amyloid-beta plaque deposition was assessed with the amyloid PET radiotracer [F-18]florbetaben. In vivo findings were correlated to ex vivo immunofluorescence staining of TSPO and x(c)(-) in microglia/macrophages and astrocytes on brain slices. Physiological changes of the brain tissue were assessed by magnetic resonance imaging (MRI) in 12-month-old mice. Results: PET studies showed a significant increase in the uptake of [F-18]DPA-714 and [F-18]FSPG in the cortex, hippocampus, and thalamus in 5xFAD but not in WT mice over time. The results correlate with A beta plaque deposition. Ex vivo staining confirmed higher TSPO overexpression in both, microglia/macrophages and astrocytes, and overexpression of x(c)(-) in non-glial cells of 5xFAD mice. Additionally, the results show that A beta plaques were surrounded by microglia/macrophages overexpressing TSPO. MRI studies showed significant tissue shrinkage and microstructural alterations in 5xFAD mice compared to controls. Conclusions: TSPO and x(c)(-) overexpression can be assessed by [F-18]DPA-714 and [F-18]FSPG, respectively, and correlate with the level of A beta plaque deposition obtained with a PET amyloid tracer. These results position the two tracers as promising imaging tools for the evaluation of disease progression.es_ES
dc.description.sponsorshipJ.L. and P.R. thank the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (PID2020-117656RB-100 and PID2020-118546RBI00, respectively) and the Interreg Atlantic Area Programme (EAPA_791/2018). Abraham Martin acknowledges funding from the Spanish Ministry of Education and Science (RYC-2017-22412, PID2019-107989RB-I00), the Basque Government (BIO18/IC/006), and Fundacio La Marato de TV3 (17/C/2017). Estibaliz Capetillo-Zarate acknowledges funding from the Basque Government (IT120319; ELKARTEK KK-2020/00034) and CIBERNED (CB06/0005/0076). The work was performed under the Maria de Maeztu Units of Excellence Programme -Grant MDM-2017-0720 funded by MCIN/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherBMCes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-117656RB-100es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-118546RBI00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RYC-2017-22412es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-107989RB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/MDM-2017-0720es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectTSPOes_ES
dc.subjectoxidative stresses_ES
dc.subjectpositron emission tomographyes_ES
dc.subjectAlzheimer diseasees_ES
dc.titleLongitudinal evaluation of neuroinflammation and oxidative stress in a mouse model of Alzheimer disease using positron emission tomographyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://alzres.biomedcentral.com/articles/10.1186/s13195-022-01016-5es_ES
dc.identifier.doi10.1186/s13195-022-01016-5
dc.departamentoesNeurocienciases_ES
dc.departamentoeuNeurozientziakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Except where otherwise noted, this item's license is described as © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.