Show simple item record

dc.contributor.authorDuque Redondo, Eduardo ORCID
dc.contributor.authorMasoero, Enrico
dc.contributor.authorManzano Moro, Hegoi ORCID
dc.date.accessioned2022-09-09T12:03:51Z
dc.date.available2022-09-09T12:03:51Z
dc.date.issued2022-04
dc.identifier.citationCement and Concrete Research 154 : (2022) // Article ID 106716es_ES
dc.identifier.issn0008-8846
dc.identifier.issn1873-3948
dc.identifier.urihttp://hdl.handle.net/10810/57679
dc.description.abstract[EN] The calcium silicate hydrate (C-S-H) controls most of the final properties of the cement paste, including its mechanical performance. It is agreed that the nanometer-sized building blocks that compose the C-S-H are the origin of the mechanical properties. In this work, we employ atomistic simulations to investigate the relaxation process of C-S-H nanoparticles subjected to shear stress. In particular, we study the stress relaxation by rearrangement of these nanoparticles via sliding adjacent C-S-H layers separated by a variable interfacial distance. The simulations show that the shear strength has its maximum at the bulk interlayer space, called perfect contact interface, and decreases sharply to low values for very short interfacial distances, coinciding with the transition from 2 to 3 water layers and beginning of the water flow. The evolution of the shear strength as a function of the temperature and ionic confinement confirms that the water diffusion controls the shear strength.es_ES
dc.description.sponsorshipWe gratefully acknowledge the financial support by "Departamento de Educacion, Politica Linguistica y Cultura del Gobierno Vasco" (IT912-16, IT1639-22). E.D.-R. acknowledges the postdoctoral fellowship from "Programa Posdoctoral de Perfeccionamiento de Personal Investigador Doctor" of the Basque Government. The authors thank for technical and human support provided by i2basque and SGIker (UPV/EHU/ERDF, EU), for the allocation of computational resources provided by the Scientific Computing Service.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectcalcium silicate hydratees_ES
dc.subjectmolecular dynamicses_ES
dc.subjectmechanical propertieses_ES
dc.subjectshear strengthes_ES
dc.subjectinterfacial distancees_ES
dc.titleNanoscale shear cohesion between cement hydrates: The role of water diffusivity under structural and electrostatic confinementes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0008884622000072?via%3Dihubes_ES
dc.identifier.doi10.1016/j.cemconres.2022.106716
dc.departamentoesFísicaes_ES
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuFisikaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's license is described as /© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)