Show simple item record

dc.contributor.authorGarcía Plazaola, José Ignacio ORCID
dc.contributor.authorLópez Pozo, Marina
dc.contributor.authorFernández Marín, Beatriz
dc.date.accessioned2022-10-07T17:06:02Z
dc.date.available2022-10-07T17:06:02Z
dc.date.issued2022
dc.identifier.citationPolar Biology 45 : 1247-1256 (2022)es_ES
dc.identifier.issn0722-4060
dc.identifier.issn1432-2056
dc.identifier.urihttp://hdl.handle.net/10810/57938
dc.description.abstractThe summer climate in Maritime Antarctica is characterised by high humidity and cloudiness with slightly above zero temperatures. Under such conditions, photosynthetic activity is temperature-limited and plant communities are formed by a few species. These conditions could prevent the operation of the photoprotective xanthophyll (VAZ) cycle as low irradiance reduces the excess of energy and low temperatures limit enzyme activity. The VAZ cycle regulates the dissipation of the excess of absorbed light as heat, which is the main mechanism of photoprotection in plants. To test whether this mechanism operates dynamically in Antarctic plant communities, we characterised pigment dynamics under natural field conditions in two representative species: the moss Polytrichum juniperinum and the grass Deschampsia antarctica. Pigment analyses revealed that the total VAZ pool was in the upper range of the values reported for most plant species, suggesting that they are exposed to a high degree of environmental stress. Despite cloudiness, there was a strong conversion of violaxanthin (V) to zeaxanthin (Z) during daytime. Conversely, the dark-induced enzymatic epoxidation back to V was not limited by nocturnal temperatures. In contrast with plants from other cold ecosystems, we did not find any evidence of overnight retention of Z or sustained reductions in photochemical efficiency. These results are of interest for modelling, remote sensing and upscaling of the responses of Antarctic vegetation to environmental challenges.es_ES
dc.description.sponsorshipThe Spanish Ministry of Science, Innovation and Universities (MICIU/FEDER, EU) and the Basque Government funded this research through the projects CTM2014-53902-C2-2-P, PGC2018-093824-B-C44 and UPV/EHU IT-1018-16. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTM2014-53902-C2-2-Pes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PGC2018-093824-B-C44es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectDeschampsia antarcticaes_ES
dc.subjectPolytrichum juniperinumes_ES
dc.subjectPhotochemical efficiencyes_ES
dc.subjectViolaxanthines_ES
dc.subjectZeaxanthines_ES
dc.titleXanthophyll cycles in the juniper haircap moss (Polytrichum juniperinum) and Antarctic hair grass (Deschampsia antarctica) on Livingston Island (South Shetland Islands, Maritime Antarctica)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2022. This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00300-022-03068-7es_ES
dc.identifier.doi10.1007/s00300-022-03068-7
dc.departamentoesBiología vegetal y ecologíaes_ES
dc.departamentoeuLandaren biologia eta ekologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2022. This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.