Show simple item record

dc.contributor.authorMartínez Abadía, Marta
dc.contributor.authorDubey, Rajeev K. ORCID
dc.contributor.authorFernández San Martín, Mercedes
dc.contributor.authorMartín Arroyo, Miguel
dc.contributor.authorAguirresarobe, Robert
dc.contributor.authorSaeki, Akinori
dc.contributor.authorMateo Alonso, Aurelio ORCID
dc.date.accessioned2022-11-11T16:11:13Z
dc.date.available2022-11-11T16:11:13Z
dc.date.issued2022-08
dc.identifier.citationChemical Science 13 : 10773-10778 (2022)es_ES
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttp://hdl.handle.net/10810/58320
dc.description.abstractHerein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered pi-gels with morphologies and sol-gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art pi-gels.es_ES
dc.description.sponsorshipThis work was carried out with support from the Basque Science Foundation for Science (Ikerbasque), POLYMAT, the University of the Basque Country, Diputacion de Guipuzcoa, Gobierno Vasco (PIBA_2022_1_0031 and BERC programme) and Gobierno de Espana (Projects PID2021-124484OB-I00 and CEX2020-001067-M financed by MCIN/AEI/10.13039/501100011033). Project (PCI2022-132921) funded by the Agencia Estatal de Investigacion through the PCI 2022 and M-ERA.NET 2021 calls. Technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF) is acknowledged. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 722951). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 899895. This work was funded by the European Union under the Horizon Europe grant 101046231.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/899895es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/ERC/722951es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/CEX2020-001067-Mes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-124484OB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectcharge-carrier mobilityes_ES
dc.subjectnanofiberses_ES
dc.subjectfabricationes_ES
dc.subjecttransportes_ES
dc.subjectcavityes_ES
dc.subjectheates_ES
dc.titleMolecular nanoribbon gelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Author(s). Published by the Royal Society of Chemistry. This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licencees_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC02637Fes_ES
dc.identifier.doi10.1039/d2sc02637f
dc.contributor.funderEuropean Commission
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Author(s). Published by the Royal Society of Chemistry. This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence
Except where otherwise noted, this item's license is described as © 2022 The Author(s). Published by the Royal Society of Chemistry. This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence