Show simple item record

dc.contributor.authorReichert, Andreas M.
dc.contributor.authorPiqué, Oriol
dc.contributor.authorParada, Walter A.
dc.contributor.authorKatsounaros, Ioannis
dc.contributor.authorCalle Vallejo, Federico
dc.date.accessioned2022-11-11T16:12:03Z
dc.date.available2022-11-11T16:12:03Z
dc.date.issued2022
dc.identifier.citationChemical Science 13 : 11205-11214 (2022)es_ES
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttp://hdl.handle.net/10810/58324
dc.description.abstractCopper electrodes produce several industrially relevant chemicals and fuels during the electrochemical CO2 reduction reaction (CO2RR). Knowledge about the reaction pathways can help tune the reaction selectivity toward higher-value products. To probe the uncertain role of the C-2 molecule glyoxal, we electrochemically reduced it on polycrystalline Cu and quantified its liquid-phase products, namely, ethanol, ethylene glycol, and acetaldehyde. The gas phase contained hydrogen and traces of ethylene. In contrast with previous hypothesis, a one-to-one comparison with CO2RR on Cu indicates that glyoxal is neither a major intermediate in the pathway toward ethylene nor in the pathway toward ethanol. In addition, great possibilities for the selective, low-temperature production of ethylene glycol are open, as computational modelling shows that ethylene glycol and ethanol are produced on different active sites. Thus, apart from the mechanistic insight into CO2RR, this study gives new directions to facilitate the electrification of chemical processes at refineries.es_ES
dc.description.sponsorshipThe authors thank Peyman Khanipour and Dmitry V. Vasilyev for useful discussions. The grants RYC-2015-18996, MDM-2017-0767 and RTI2018-095460-B-I00 were funded by MCIN/AEI/10.13039/501100011033 and by the European Union. This work was also partly supported by Generalitat de Catalunya via the grant 2017SGR13.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/RYC-2015-18996es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/MDM-2017-0767es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-095460-B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectelectrochemical reductiones_ES
dc.subjectcarbon dioxidees_ES
dc.subjectelectroreductiones_ES
dc.subjectacetaldehydees_ES
dc.subjectethylenees_ES
dc.subjectintermediatees_ES
dc.subjectelectrodees_ES
dc.subjectselectivityes_ES
dc.subjectmonoxidees_ES
dc.subjectethanoles_ES
dc.titleMechanistic insight into electrocatalytic glyoxal reduction on copper and its relation to CO2 reductiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 unported licence.es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC03527Hes_ES
dc.identifier.doi10.1039/d2sc03527h
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 unported licence.
Except where otherwise noted, this item's license is described as © 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 unported licence.