Show simple item record

dc.contributor.authorRama Eiroa, Ricardo
dc.contributor.authorRoy, P. E.
dc.contributor.authorGonzález Estévez, Julián María ORCID
dc.contributor.authorGusliyenko, Kostyantyn
dc.contributor.authorWunderlich, J.
dc.contributor.authorOtxoa, Ruben M.
dc.date.accessioned2022-12-13T17:39:41Z
dc.date.available2022-12-13T17:39:41Z
dc.date.issued2022-10
dc.identifier.citationJournal of Magnetism and Magnetic Materials 560 : (2022) // Article ID 169566es_ES
dc.identifier.issn0304-8853
dc.identifier.issn1873-4766
dc.identifier.urihttp://hdl.handle.net/10810/58723
dc.description.abstractThe motion of a Neel-like 180 degrees domain wall induced by a time-dependent staggered spin-orbit field in the layered collinear antiferromagnet Mn2Au is explored. Through an effective version of the two sublattice nonlinear a-model which does not take into account the antiferromagnetic exchange interaction directed along the tetragonal c-axis, it is possible to replicate accurately the relativistic and inertial traces intrinsic to the magnetic texture dynamics obtained through atomistic spin dynamics simulations for quasistatic processes. In the case in which the steady-state magnetic soliton motion is extinguished due to the abrupt shutdown of the external stimulus, its stored relativistic exchange energy is transformed into a complex translational mobility, being the rigid domain wall profile approximation no longer suitable. Although it is not feasible to carry out a detailed follow-up of its temporal evolution in this case, it is possible to predict the inertial-based distance travelled by the domain wall in relation to its steady-state relativistic mass. This exhaustive dynamical characterization for different time-dependent regimes of the driving force is of potential interest in antiferromagnetic domain wall-based device applications.es_ES
dc.description.sponsorshipR.R.-E., K.Y.G., and R.M.O. thanks O. Chubykalo-Fesenko, S. Khmelevskyi, A. A. Sapozhnik, M. Jourdan, A. K. Zvezdin, and B. A. Ivanov for the fruitful discussions that have helped us to improve this manuscript. The work of R.M.O. and K.Y.G. was partially supported by the STSM Grants from the COST Action CA17123 "Ultrafast opto-magneto-electronics for non-dissipative information technology''. K.Y.G. acknowledges support by IKERBASQUE (the Basque Foundation for Science) and the Spanish Ministry of Science and Innovation under grant PID2019-108075RB-C33/AEI/10.13039/501100011033.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-108075RB-C33es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectdomain walles_ES
dc.subjectantiferromagnetses_ES
dc.subjectspin-orbit couplinges_ES
dc.subjectspecial relativityes_ES
dc.subjectmagnetization dynamicses_ES
dc.titleInertial domain wall characterization in layered multisublattice antiferromagnetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S030488532200484X?via%3Dihubes_ES
dc.identifier.doi10.1016/j.jmmm.2022.169566
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).