Show simple item record

dc.contributor.authorMartínez Otzeta, José María
dc.contributor.authorRodríguez Moreno, Itsaso
dc.contributor.authorMendialdua Beitia, Iñigo ORCID
dc.contributor.authorSierra Araujo, Basilio ORCID
dc.date.accessioned2023-01-10T17:59:54Z
dc.date.available2023-01-10T17:59:54Z
dc.date.issued2022-12-28
dc.identifier.citationSensors 23(1) : (2023) // Article ID 327es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10810/59215
dc.description.abstractRandom Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.es_ES
dc.description.sponsorshipThis work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737.es_ES
dc.language.isoenges_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/PID2021-122402OB-C21es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectRANSACes_ES
dc.subjectfeature matchinges_ES
dc.subjecttransformation matrixes_ES
dc.subjectshape detectiones_ES
dc.subjectobject recognitiones_ES
dc.subjectrobotic systemses_ES
dc.subjectreal timees_ES
dc.titleRANSAC for Robotic Applications: A Surveyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-01-06T13:52:58Z
dc.rights.holder© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/1/327es_ES
dc.identifier.doi10.3390/s23010327
dc.departamentoesCiencia de la computación e inteligencia artificial
dc.departamentoesLenguajes y sistemas informáticos
dc.departamentoeuKonputazio zientziak eta adimen artifiziala
dc.departamentoeuLengoaia eta Sistema Informatikoak


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
Except where otherwise noted, this item's license is described as © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)