Show simple item record

dc.contributor.authorValentine, Andrew J.
dc.contributor.authorGeer, Ana M.
dc.contributor.authorBlundell, Toby J.
dc.contributor.authorCliffe, Matthew J.
dc.contributor.authorDavies, E. Stephen
dc.contributor.authorArgent, Stephen P.
dc.contributor.authorLewis, William
dc.contributor.authorMcMaster, Jonathan
dc.contributor.authorTaylor, Laurence J.
dc.contributor.authorReta Mañeru, Daniel
dc.contributor.authorKays, Deborah L.
dc.date.accessioned2023-01-16T15:40:02Z
dc.date.available2023-01-16T15:40:02Z
dc.date.issued2022
dc.identifier.citationDalton Transactions 51(47) : 18118-18126 (2022)es_ES
dc.identifier.issn1477-9226
dc.identifier.issn1477-9234
dc.identifier.urihttp://hdl.handle.net/10810/59307
dc.description.abstractTwo-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordinate Fe(II) m-terphenyl complexes (4-R-2,6-Xyl(2)C(6)H(2))(2)Fe [R = tBu (1), SiMe3 (2), H (3), Cl (4), CF3 (5)] where, by changing the functionalisation of the para-substituent (R), we alter their magnetic function. All five complexes are field-induced single-molecule magnets, with relaxation rates that are well-described by a combination of direct and Raman mechanisms. By using more electron donating R groups we were able to slow the rate of magnetic relaxation. Our ab initio calculations predict a large crystal field splitting (> 850 cm(-1)) and sizeable zero-field splitting parameters (ca. -60 cm(-1), |E| < 0.2 cm(-1)) for 1-5. These favourable magnetic properties suggest that m-terphenyl ligands have untapped potential as chemically versatile ligands able to impose highly axial crystal fields.es_ES
dc.description.sponsorshipWe acknowledge the EPSRC [grant number EP/R004064/1]; the Leverhulme Trust [grant numbers RPG-2014-317; RF-2021-102]; and the University of Nottingham [Hobday Bequest] for financial support of this research. We would also like to thank the National Mass Spectrometry Facility at Swansea University for mass spectrometry measurements and the Microanalysis Service at London Metropolitan University for elemental microanalysis measurements. We thank Dr Maria Gimenez Lopez (University of Santiago de Compostela) for preliminary discussions, and Prof. Mark Murrie and Dr Emma Regincos Marti (University of Glasgow) for helpful discussions about AC susceptibility data.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectJahn Teller distorsiones_ES
dc.subjectligand fieldes_ES
dc.subjectelectronic structureses_ES
dc.subjectspin crossoveres_ES
dc.subjectsinglees_ES
dc.subjectanisotropyes_ES
dc.subjectbehaviores_ES
dc.subjectfamilyes_ES
dc.subjectFees_ES
dc.titleSlow magnetic relaxation in Fe(ii) m-terphenyl complexeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Royal Society of Chemistry 2022. This article is licensed under a Creative Commons Attribution 3.0 unported licence (CC BY 3.0).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2022/DT/D2DT03531Fes_ES
dc.identifier.doi10.1039/d2dt03531f
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Royal Society of Chemistry 2022. This article is licensed under a Creative Commons Attribution 3.0 unported licence (CC BY 3.0).
Except where otherwise noted, this item's license is described as © The Royal Society of Chemistry 2022. This article is licensed under a Creative Commons Attribution 3.0 unported licence (CC BY 3.0).