Show simple item record

dc.contributor.authorBozal Leorri, Adrián
dc.contributor.authorSubbarao, Guntur V.
dc.contributor.authorKishii, Masahiro
dc.contributor.authorUrmeneta Garín, Leyre
dc.contributor.authorKommerell, Victor
dc.contributor.authorBraun, Hans-Joachim
dc.contributor.authorAparicio Tejo, Pedro M.
dc.contributor.authorOrtiz Monasterio, Iván
dc.contributor.authorGonzález Murua, María del Carmen Begoña
dc.contributor.authorGonzález Moro, María Begoña
dc.date.accessioned2023-01-17T16:33:09Z
dc.date.available2023-01-17T16:33:09Z
dc.date.issued2022-11
dc.identifier.citationFrontiers in Plant Science 13 : (2022) // Article ID 1034219es_ES
dc.identifier.issn1664-462X
dc.identifier.urihttp://hdl.handle.net/10810/59327
dc.description.abstractSynthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil NO3- formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.es_ES
dc.description.sponsorshipThis project was funded by the Spanish Government (RTI2018-094623-B-C21 MCIU/AEI/FEDER, UE) and by the Basque Government (IT932-16; IT1560-22; 00048-ID2021-45). AB-L and LU held grants from the Basque Government (PRE-2020-2-0142 and PRE-2020-1-0127).es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-094623-B-C21es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectammonia-oxidizing archaeaes_ES
dc.subjectammonia-oxidizing bacteriaes_ES
dc.subjectN fertilizationes_ES
dc.subjectnitrogen use efficiencyes_ES
dc.subjectsynthetic nitrification inhibitores_ES
dc.titleBiological nitrification inhibitor-trait enhances nitrogen uptake by suppressing nitrifier activity and improves ammonium assimilation in two elite wheat varietieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Bozal-Leorri, Subbarao, Kishii, Urmeneta, Kommerell, Karwat, Braun, Aparicio-Tejo, Ortiz-Monasterio, González-Murua and González-Moro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fpls.2022.1034219es_ES
dc.identifier.doi10.3389/fpls.2022.1034219
dc.departamentoesBiología vegetal y ecologíaes_ES
dc.departamentoeuLandaren biologia eta ekologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Bozal-Leorri, Subbarao, Kishii, Urmeneta, Kommerell, Karwat, Braun, Aparicio-Tejo, Ortiz-Monasterio, González-Murua and González-Moro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2022 Bozal-Leorri, Subbarao, Kishii, Urmeneta, Kommerell, Karwat, Braun, Aparicio-Tejo, Ortiz-Monasterio, González-Murua and González-Moro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.