Show simple item record

dc.contributor.authorMalaina Celada, Iker ORCID
dc.contributor.authorMartínez Fernández, Luis ORCID
dc.contributor.authorMontoya, Juan Manuel
dc.contributor.authorAlonso Alegre, Santos ORCID
dc.contributor.authorBoyano López, María Dolores ORCID
dc.contributor.authorAsumendi Mallea, Aintzane ORCID
dc.contributor.authorIzu Belloso, Rosa María
dc.contributor.authorSánchez Díez, Ana
dc.contributor.authorCancho Galán, Goikoane
dc.contributor.authorMartínez de la Fuente Martínez, Ildefonso Abel
dc.date.accessioned2023-01-24T15:12:58Z
dc.date.available2023-01-24T15:12:58Z
dc.date.issued2023-01-05
dc.identifier.citationLife 13(1) : (2023) // Article ID 155es_ES
dc.identifier.issn2075-1729
dc.identifier.urihttp://hdl.handle.net/10810/59444
dc.description.abstractBackground: The main purpose of this article is to introduce a universal mathematics-aided vaccine design method against malignant melanoma based on neoantigens. The universal method can be adapted to the mutanome of each patient so that a specific candidate vaccine can be tailored for the corresponding patient. Methods: We extracted the 1134 most frequent mutations in melanoma, and we associated each of them to a vector with 10 components estimated with different bioinformatics tools, for which we found an aggregated value according to a set of weights, and then we ordered them in decreasing order of the scores. Results: We prepared a universal table of the most frequent mutations in melanoma ordered in decreasing order of viability to be used as candidate vaccines, so that the selection of a set of appropriate peptides for each particular patient can be easily and quickly implemented according to their specific mutanome and transcription profile. Conclusions: We have shown that the techniques that are commonly used for the design of personalized anti-tumor vaccines against malignant melanoma can be adapted for the design of universal rankings of neoantigens that originate personalized vaccines when the mutanome and transcription profile of specific patients is considered, with the consequent savings in time and money, shortening the design and production time.es_ES
dc.description.sponsorshipThis research was funded by Basque Government grant number IT456-22, and by UPV/EHU and BCAM grant number US21/27.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectvaccine designes_ES
dc.subjectmelanomaes_ES
dc.subjectcombinatorial optimizationes_ES
dc.subjectimmunogenicityes_ES
dc.subjectbioinformaticses_ES
dc.subjectpersonalized medicinees_ES
dc.titleA Universal Antigen-Ranking Method to Design Personalized Vaccines Targeting Neoantigens against Melanomaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-01-20T14:22:57Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2075-1729/13/1/155es_ES
dc.identifier.doi10.3390/life13010155
dc.departamentoesMatemáticas
dc.departamentoesGenética, antropología física y fisiología animal
dc.departamentoesBiología celular e histología
dc.departamentoeuMatematika
dc.departamentoeuGenetika,antropologia fisikoa eta animalien fisiologia
dc.departamentoeuZelulen biologia eta histologia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).