Show simple item record

dc.contributor.authorIriondo Nagore, Marina
dc.contributor.authorEtxaniz Iriondo, Asier
dc.contributor.authorVarela Fernández, Yaiza
dc.contributor.authorBallesteros Rivero, Uxue
dc.contributor.authorLázaro, Melisa
dc.contributor.authorValle, Mikel
dc.contributor.authorFracchiolla, Dorotea
dc.contributor.authorMartens, Sascha
dc.contributor.authorMontes Burgos, Lidia Ruth ORCID
dc.contributor.authorGoñi Urcelay, Félix María ORCID
dc.contributor.authorAlonso Izquierdo, Alicia ORCID
dc.date.accessioned2023-02-15T18:00:22Z
dc.date.available2023-02-15T18:00:22Z
dc.date.issued2023-02
dc.identifier.citationCellular and Molecular Life Sciences 80(2) : (2023) // Article ID 56es_ES
dc.identifier.issn1420-9071
dc.identifier.urihttp://hdl.handle.net/10810/59871
dc.description.abstractIn macroautophagy, the autophagosome (AP) engulfs portions of cytoplasm to allow their lysosomal degradation. AP formation in humans requires the concerted action of the ATG12 and LC3/GABARAP conjugation systems. The ATG12–ATG5-ATG16L1 or E3-like complex (E3 for short) acts as a ubiquitin-like E3 enzyme, promoting LC3/GABARAP proteins anchoring to the AP membrane. Their role in the AP expansion process is still unclear, in part because there are no studies comparing six LC3/GABARAP family member roles under the same conditions, and also because the full human E3 was only recently available. In the present study, the lipidation of six members of the LC3/GABARAP family has been reconstituted in the presence and absence of E3, and the mechanisms by which E3 and LC3/GABARAP proteins participate in vesicle tethering and fusion have been investigated. In the absence of E3, GABARAP and GABARAPL1 showed the highest activities. Differences found within LC3/GABARAP proteins suggest the existence of a lipidation threshold, lower for the GABARAP subfamily, as a requisite for tethering and inter-vesicular lipid mixing. E3 increases and speeds up lipidation and LC3/GABARAP-promoted tethering. However, E3 hampers LC3/GABARAP capacity to induce inter-vesicular lipid mixing or subsequent fusion, presumably through the formation of a rigid scaffold on the vesicle surface. Our results suggest a model of AP expansion in which the growing regions would be areas where the LC3/GABARAP proteins involved should be susceptible to lipidation in the absence of E3, or else a regulatory mechanism would allow vesicle incorporation and phagophore growth when E3 is present.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (grants No. PGC2018-099857-B-I00 and PID2021-124461NB-I00), by the Basque Government (grants No. IT1625-22 and IT1270-19), by Fundación Biofísica Bizkaia, by Fundación Ramón Areces (grant No. CIVP20A6619), and by the Basque Excellence Research Centre (BERC) program of the Basque Government. MI and YV were recipients of predoctoral FPU fellowships from the Spanish Ministry of Science, Innovation and Universities (FPU16/05873, FPU18/00799), UB thanks the University of the Basque Country for a predoctoral contract. This work was supported by Human Frontiers Science Program RGP0026/2017 (S.M.).es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PGC2018-099857-B-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-124461NB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleEffect of ATG12–ATG5-ATG16L1 autophagy E3-like complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2023. This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00018-023-04704-zes_ES
dc.identifier.doi10.1007/s00018-023-04704-z
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2023. This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2023. This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.