An empirical evaluation of techniques for parallel simulation of message passing networks
View/ Open
Date
1996-01-15Author
Miguel Alonso, José
Metadata
Show full item recordAbstract
[EN]In the field of computer design, simulation is an essential tool to validate and evaluate architectural proposals. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a model of a message router. This router has been designed to constitute the communication infrastructure of a (hypothetical) massively parallel computer.
Three parallel simulation techniques have been considered: synchronous, asynchronous-conservative and asynchronous-optimistic. These algorithms have been implemented in three multicomputers: a transputer-based Supernode, an Intel Paragon and a network of workstations. The influence that factors such as the characteristics of the simulated models, the organization of the simulators and the characteristics of the target multicomputers have in the performance of the simulations has been measured and characterized.
It is concluded that optimistic parallel simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. A network of workstations is not the right platform for our experiments, because the communication demands of the parallel simulators surpass the abilities of local area networks—the granularity is too fine. Synchronous and conservative parallel simulation techniques perform very well in the Supernode and in the Paragon, specially if the model to simulate is complex or large—precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealizable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications. [ES]En el ámbito del diseño de computadores, la simulación es una herramienta imprescindible para la validación y evaluación de cualquier propuesta arquitectónica. Las ténicas convencionales de simulación, diseñadas para su utilización en computadores secuenciales, son demasiado lentas si el sistema a simular es grande o complejo. El objetivo de esta tesis es buscar técnicas para acelerar estas simulaciones, aprovechando el paralelismo disponible en multicomputadores comerciales, y usar esas técnicas para el estudio de un modelo de encaminador de mensajes. Este encaminador está diseñado para formar infraestructura de comunicaciones de un hipotético computador masivamente paralelo.
En este trabajo se consideran tres técnicas de simulación paralela: síncrona, asíncrona-conservadora y asíncrona-optimista. Estos algoritmos se han implementado en tres multicomputadores: un Supernode basado en Transputers, un Intel Paragon y una red de estaciones de trabajo. Se caracteriza la influencia que tienen en las prestaciones de los simuladores aspectos tales como los parámetros del modelo simulado, la organización del simulador y las características del multicomputador utilizado.
Se concluye que las técnicas de simulación paralela optimista no resultan adecuadas para trabajar con el modelo considerado, aunque pueden ofrecer un buen rendimiento en otros entornos. La red de estaciones de trabajo no resulta una plataforma apropiada para estas simulaciones, ya que una red local no reúne condiciones para la ejecución de aplicaciones paralelas de grano fino. Las técnicas de simulación paralela síncrona y conservadora dan muy buenos resultados en el Supernode y en el Paragon, especialmente si el modelo a simular es complejo o grande—precisamente el peor caso para los algoritmos secuenciales. De esta forma, estudios previamente considerados inviables, por ser demasiado costosos computacionalmente, pueden realizarse en tiempos razonables. Además, se amplía el espectro de posibilidades de los multicomputadores, utilizándolos para algo más que aplicaciones numéricas.