Show simple item record

dc.contributor.authorTeso Fernández de Betoño, Adrián ORCID
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorCabezas Olivenza, Mireya
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorBotana Martínez de Ibarreta, Carlos
dc.date.accessioned2023-03-13T18:19:28Z
dc.date.available2023-03-13T18:19:28Z
dc.date.issued2023-02-28
dc.identifier.citationMathematics 11(5) : (2023) // Article ID 1183es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/60345
dc.description.abstractThe stochastic gradient descendant algorithm is one of the most popular neural network training algorithms. Many authors have contributed to modifying or adapting its shape and parametrizations in order to improve its performance. In this paper, the authors propose two modifications on this algorithm that can result in a better performance without increasing significantly the computational and time resources needed. The first one is a dynamic learning ratio depending on the network layer where it is applied, and the second one is a dynamic drop-out that decreases through the epochs of training. These techniques have been tested against different benchmark function to see their effect on the learning process. The obtained results show that the application of these techniques improves the performance of the learning of the neural network, especially when they are used together.es_ES
dc.description.sponsorshipThe current study has been sponsored by the Government of the Basque Country-ELKARTEK21/10 KK-2021/00014 (“Estudio de nuevas técnicas de inteligencia artificial basadas en Deep Learning dirigidas a la optimización de procesos industriales”) research program.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectmachine learninges_ES
dc.subjectneural network traininges_ES
dc.subjecttraining algorithmses_ES
dc.titleModification of Learning Ratio and Drop-Out for Stochastic Gradient Descendant Algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-03-10T14:03:31Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/11/5/1183es_ES
dc.identifier.doi10.3390/math11051183
dc.departamentoesIngeniería Energética
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoeuEnergia Ingenieritza
dc.departamentoeuSistemen ingeniaritza eta automatika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).