Show simple item record

dc.contributor.authorMangoufis-Giasin, Iosif
dc.contributor.authorPiqué, Oriol
dc.contributor.authorKhanipour, Peyman
dc.contributor.authorMayrhofer, Karl J. J.
dc.contributor.authorCalle Vallejo, Federico
dc.contributor.authorKatsounaros, Ioannis
dc.date.accessioned2023-03-22T16:04:06Z
dc.date.available2023-03-22T16:04:06Z
dc.date.issued2021-06-17
dc.identifier.citationJournal of Catalysis 400 : 166-172 (2021)es_ES
dc.identifier.issn0021-9517
dc.identifier.issn1090-2694
dc.identifier.urihttp://hdl.handle.net/10810/60444
dc.description.abstractThis study shows remarkably different features between the oxidation of secondary and primary C3-C5 alcohols. The oxidation of primary alcohols is controlled by the oxidative removal of blocking adsorbates, such as CO, formed after the dissociative adsorption of alcohol molecules. Conversely, secondary alcohols do not undergo dissociative adsorption and therefore their oxidation is purely controlled by the energetics of the elementary reaction steps. In this respect, a different role of ruthenium is revealed for the electrooxidation of primary and secondary alcohols on bimetallic platinum-ruthenium catalysts. Ruthenium enhances the oxidation of primary alcohols via the established bifunctional mechanism, in which the adsorption of (hydr)oxide species that are necessary to remove the blocking adsorbates is favored. In contrast, the oxidation of secondary alcohols is enhanced by the Ru-assisted stabilization of an O-bound intermediate that is involved in the potential-limiting step. This alternative pathway enables the oxidation of secondary alcohols close to the equilibrium potential.es_ES
dc.description.sponsorshipThis work was funded by the Bavarian Ministry of Economic Affairs, Regional Development and Energy. F.C.-V. acknowledges funding from Spanish MICIUN RTI2018-095460-B-I00, Ramón y Cajal RyC-2015-18996 and María de Maeztu MDM-2017-0767 grants and partly by Generalitat de Catalunya 2017SGR13. O.P. thanks the Spanish MICIUN for a PhD grant (PRE2018-083811). We thank Red Española de Supercomputación (RES) for supercomputing time at SCAYLE (projects QS-2019-3-0018, QS-2019-2-0023, and QCM-2019-1-0034), MareNostrum (project QS-2020-1-0012), and CENITS (project QS-2020-2-0021). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support by NWO.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICIUN/RTI2018-095460-B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectelectrocatalysises_ES
dc.subjectelectrochemical energy conversiones_ES
dc.subjectdirect alcohol fuel cellses_ES
dc.subjectalcohol electrooxidationes_ES
dc.subjectsecondary alcohols 2-propanol oxidationes_ES
dc.subjectelectrochemical real-time mass spectrometryes_ES
dc.subjectdensity functional theoryes_ES
dc.titleDifferent promoting roles of ruthenium for the oxidation of primary and secondary alcohols on PtRu electrocatalystses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0021951721002207es_ES
dc.identifier.doi10.1016/j.jcat.2021.05.028
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as © 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/