Show simple item record

dc.contributor.authorSauer, Mikkel Ohm
dc.contributor.authorTaghizadeh, Alireza
dc.contributor.authorPetralanda Holguin, Urko
dc.contributor.authorOvesen, Martin
dc.contributor.authorThygesen, Kristian Sommer
dc.contributor.authorOlsen, Thomas
dc.contributor.authorCornean, Horia
dc.contributor.authorPedersen, Thomas Garm
dc.date.accessioned2023-04-03T17:45:14Z
dc.date.available2023-04-03T17:45:14Z
dc.date.issued2023
dc.identifier.citationnpj Computational Materials 9 : (2023) // Article ID 35es_ES
dc.identifier.issn2057-3960
dc.identifier.urihttp://hdl.handle.net/10810/60598
dc.description.abstractShift current photovoltaic devices are potential candidates for future cheap, sustainable, and efficient electricity generation. In the present work, we calculate the solar-generated shift current and efficiencies in 326 different 2D materials obtained from the computational database C2DB. We apply, as metrics, the efficiencies of monolayer and multilayer samples. The monolayer efficiencies are generally found to be low, while the multilayer efficiencies of infinite stacks show great promise. Furthermore, the out-of-plane shift current response is considered, and material candidates for efficient out-of-plane shift current devices are identified. Among the screened materials, MXY Janus and MX2 transition metal dichalchogenides (TMDs) constitute a prominent subset, with chromium based MXY Janus TMDs holding particular promise. Finally, in order to explain the band gap dependence of the PV efficiency, a simple gapped graphene model with a variable band gap is established and related to the calculated efficiencies.es_ES
dc.description.sponsorshipM.O.S., A.T., K.S.T., and T.G.P. are supported by the CNG center under the Danish National Research Foundation, project DNRF103. U.P. acknowledges funding from the European Union’s Next Generation EU plan through the María Zambrano programme (MAZAM21/19). T.O. is supported by the Villum foundation, Grant No. 00028145. K.S.T. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant No. 773122 (LIMA) and Grant agreement No. 951786 (NOMAD CoE). K.S.T. is a Villum Investigator supported by the Villum foundation (Grant No. 37789).es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/773122es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/951786es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleShift current photovoltaic efficiency of 2D materialses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http:// creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41524-023-00983-zes_ES
dc.identifier.doi10.1038/s41524-023-00983-z
dc.contributor.funderEuropean Commission
dc.departamentoesFísicaes_ES
dc.departamentoeuFisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2023. This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http:// creativecommons.org/licenses/by/4.0/.