dc.contributor.author | Fortuin, Brigette Althea | |
dc.contributor.author | Meabe Iturbe, Leire | |
dc.contributor.author | Rodríguez Peña, Sergio | |
dc.contributor.author | Zhang, Yan | |
dc.contributor.author | Qiao, Lixin | |
dc.contributor.author | Etxabe Tellería, Julen | |
dc.contributor.author | García Maestre, Lorena | |
dc.contributor.author | Manzano Moro, Hegoi | |
dc.contributor.author | Armand, Michel | |
dc.contributor.author | Martínez Ibáñez, María | |
dc.contributor.author | Carrasco Rodríguez, Javier | |
dc.date.accessioned | 2023-04-26T17:07:42Z | |
dc.date.available | 2023-04-26T17:07:42Z | |
dc.date.issued | 2023-01 | |
dc.identifier.citation | Journal of Physical Chemistry C 127(4) : 1955-1964 (2023) | es_ES |
dc.identifier.issn | 1932-7447 | |
dc.identifier.issn | 1932-7455 | |
dc.identifier.uri | http://hdl.handle.net/10810/60941 | |
dc.description.abstract | The advent of Li-metal batteries has seen progress toward studies focused on the chemical modification of solid polymer electrolytes, involving tuning either polymer or Li salt properties to enhance the overall cell performance. This study encompasses chemically modifying simultaneously both polymer matrix and lithium salt by assessing ion coordination environments, ion transport mechanisms, and molecular speciation. First, commercially used lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is taken as a reference, where F atoms become partially substituted by one or two H atoms in the −CF3 moieties of LiTFSI. These substitutions lead to the formation of lithium(difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI) and lithium bis(difluoromethanesulfonyl)imide (LiDFSI) salts. Both lithium salts promote anion immobilization and increase the lithium transference number. Second, we show that exchanging archetypal poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL) significantly changes charge carrier speciation. Studying the ionic structures of these polymer/Li salt combinations (LiTFSI, LiDFTFSI or LiDFSI with PEO or PCL) by combining molecular dynamics simulations and a range of experimental techniques, we provide atomistic insights to understand the solvation structure and synergistic effects that impact macroscopic properties, such as Li+ conductivity and transference number. | es_ES |
dc.description.sponsorship | The authors acknowledge support from the European Commission grant for Erasmus Mundus Joint Master’s Degree MESC+ under Framework Agreement Number 2018-1424/001-001-EMJMD, the EU Marie Sklodowska-Curie COFUND DESTINY project under Grant Agreement No. 945357, and the Basque Government PhD Grant. H.M. acknowledges funding from the “Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco” (Grant IT1358-22). They also thank SGI/IZO-SGIker UPV/EHU for supercomputing resources. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/945357 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.title | Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2023 The Authors. Published by American Chemical Society. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://pubs.acs.org/doi/10.1021/acs.jpcc.2c07032 | es_ES |
dc.identifier.doi | 10.1021/acs.jpcc.2c07032 | |
dc.contributor.funder | European Commission | |
dc.departamentoes | Física | es_ES |
dc.departamentoeu | Fisika | es_ES |