Show simple item record

dc.contributor.authorRomeo, Eleanora
dc.contributor.authorLezana Muralles, María Fernanda
dc.contributor.authorIllas, Francesc
dc.contributor.authorCalle Vallejo, Federico
dc.date.accessioned2023-05-10T17:53:54Z
dc.date.available2023-05-10T17:53:54Z
dc.date.issued2023-04
dc.identifier.citationACS Applied Materials & Interfaces 15(18) : 22176-22183 (2023)es_ES
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.urihttp://hdl.handle.net/10810/61070
dc.description.abstractElectrocatalytic reduction of oxidized nitrogen compounds (NOx) promises to help rebalance the nitrogen cycle. It is widely accepted that nitrate reduction to NH4+/NH3 involves NO as an intermediate, and NO hydrogenation is the potential-limiting step of NO reduction. Whether *NO hydrogenates to *NHO or *NOH is still a matter of debate, which makes it difficult to optimize catalysts for NOx electroreduction. Here, “catalytic matrices” are used to swiftly extract features of active transition metal catalysts for NO electroreduction. The matrices show that active catalysts statistically stabilize *NHO over *NOH and have undercoordinated sites. Besides, square-symmetry active sites with Cu and other elements may prove active for NO electroreduction. Finally, multivariate regressions are able to reproduce the main features found by the matrices, which opens the door for more sophisticated machine-learning studies. In sum, catalytic matrices may ease the analysis of complex electrocatalytic reactions on multifaceted materials.es_ES
dc.description.sponsorshipThis work was supported by grants PID2021-127957NB-I00, TED2021-132550B−C21, PID2021-126076NB-I00, and María de Maeztu Excellence Unit CEX2021-001202-M funded by the Spanish MCIN/AEI/10.13039/501100011033 and by the European Union. We thank the Red Españ ola de Supercomputación for providing computational resources through grants QHS-2022-1-0002 and QHS-2022-2-0016. E.R. thanks the Spanish MICIUN for an FPI PhD grant (PRE2020-092382 associated to the MDM-2017-0767-20-1 grant).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-127957NB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/TED2021-132550B−C21es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-126076NB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/CEX2021-001202-Mes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/MDM-2017-0767-20-1es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectnitric oxide reductiones_ES
dc.subjectnitric oxide hydrogenationes_ES
dc.subjectelectrocatalysises_ES
dc.subjectstructural sensitivityes_ES
dc.subjectreaction mechanismes_ES
dc.titleExtracting Features of Active Transition Metal Electrodes for NO Electroreduction with Catalytic Matriceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acsami.3c03385es_ES
dc.identifier.doi10.1021/acsami.3c03385
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by
American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)