Show simple item record

dc.contributor.authorMittal, Neeru
dc.contributor.authorTien, Sean
dc.contributor.authorLizundia Fernández, Erlantz ORCID
dc.contributor.authorNiederberger, Markus
dc.date.accessioned2023-05-10T17:55:41Z
dc.date.available2023-05-10T17:55:41Z
dc.date.issued2022-10
dc.identifier.citationSmall 18(43) : (2022) // Article ID 2107183es_ES
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/10810/61078
dc.description.abstractSodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.32 mS cm−1, and a Na+ transference number of 0.637. A balanced ratio of mechanically rigid cellulose nanocrystals and flexible cellulose nanofibers results in a mesoporous hierarchical structure that ensures close contact with metallic Na. This architecture offers stable Na plating/stripping at current densities up to ±500 µA cm−2, outperforming conventional fossil-based NIBs containing separator–liquid electrolytes. Paired with an environmentally sustainable and economically attractive Na2Fe2(SO4)3 cathode, the battery reaches an energy density of 240 Wh kg−1, delivering 69.7 mAh g−1 after 50 cycles at a rate of 1C. In comparison, Celgard in liquid electrolyte delivers only 0.6 mAh g−1 at C/4. Such gel polymer electrolytes may open up new opportunities for sustainable energy storage systems beyond lithium ion batteries.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge financial support from ETH Zurich (ETH Research Grant ETH-45 18-1). Dr. Elena Tervoort and the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH Zurich are kindly acknowledged for SEM and energy-dispersive X-ray spectroscopy analysis.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectbeyond lithium ionses_ES
dc.subjectgel polymer electrolyteses_ES
dc.subjectnanocellulosees_ES
dc.subjectsodium ion batterieses_ES
dc.subjectsustainable batterieses_ES
dc.titleHierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batterieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Small published by Wiley-VCH GmbH This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202107183es_ES
dc.identifier.doi10.1002/smll.202107183
dc.departamentoesExpresión grafica y proyectos de ingenieríaes_ES
dc.departamentoeuAdierazpen grafikoa eta ingeniaritzako proiektuakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Small published by Wiley-VCH GmbH

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Except where otherwise noted, this item's license is described as © 2022 The Authors. Small published by Wiley-VCH GmbH This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.