dc.contributor.author | Torre Tojal, Leyre | |
dc.contributor.author | Bastarrica Izaguirre, Aitor | |
dc.contributor.author | Boyano Murillo, Ana Isabel | |
dc.contributor.author | López Guede, José Manuel | |
dc.contributor.author | Graña Romay, Manuel María | |
dc.date.accessioned | 2023-05-19T17:13:11Z | |
dc.date.available | 2023-05-19T17:13:11Z | |
dc.date.issued | 2022-02 | |
dc.identifier.citation | Journal of Computational Science 58 : (2022) // Article ID 101517 | es_ES |
dc.identifier.issn | 1877-7503 | |
dc.identifier.issn | 1877-7511 | |
dc.identifier.uri | http://hdl.handle.net/10810/61179 | |
dc.description.abstract | Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government. | es_ES |
dc.description.sponsorship | The work reported in this paper was partially supported by FEDER funds for the MINECO project TIN2017-85827-P and project KK-202000044 of the Elkartek 2020 funding program of the Basque Government. Additional support comes from grant IT1284-19 of the Basque Autonomous Community. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/TIN2017-85827-P | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | LiDAR | es_ES |
dc.subject | biomass | es_ES |
dc.subject | regression | es_ES |
dc.subject | random forest | es_ES |
dc.title | Above-ground biomass estimation from LiDAR data using random forest algorithms | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1877750321001800?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/j.jocs.2021.101517 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoes | Ingeniería de sistemas y automática | es_ES |
dc.departamentoes | Ingeniería mecánica | es_ES |
dc.departamentoes | Ingeniería Minera y Metalúrgica y Ciencia de los Materiales | es_ES |
dc.departamentoeu | Ingeniaritza mekanikoa | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |
dc.departamentoeu | Meatze eta metalurgia ingeniaritza materialen zientzia | es_ES |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | es_ES |