Show simple item record

dc.contributor.advisorCastaño Sánchez, Pedro
dc.contributor.advisorEpelde Bejerano, Eva
dc.contributor.authorIzaddoust, Sepideh
dc.date2025-04-20
dc.date.accessioned2023-05-22T06:18:23Z
dc.date.available2023-05-22T06:18:23Z
dc.date.issued2023-04-20
dc.date.submitted2023-04-20
dc.identifier.urihttp://hdl.handle.net/10810/61194
dc.description305 p.es_ES
dc.description.abstractCatalytic pathways and deactivation on acid catalysts have been studied for two industrial catalytic processes implemented in the current refinery, oligomerization and FCC units, which are versatile for facing the recent changes in supply/demand of transportation fuels (gasoline and diesel) within the energy transition scenario. For this purpose, each process has been studied separately, in different types of reactors: fixed bed and operando UV-Vis cell reactors, for oligomerization and a riser simulator for FCC. Other feeds have been used: (i) 1-butene (n-butenes in equilibrium) for oligomerization; and non-conventional (shale oil) and conventional VGO, and MARPOL C type residue, for FCC. Likewise, two heterogeneous acid catalysts have been used: HZSM-5 and HY zeolite-based catalysts for oligomerization and FCC, respectively. The main goal has been to establish the effect of operating conditions (temperature, pressure, space time, partial pressure), the use of alternative feeds, especially to be incorporated into FCC units, on the catalytic performance (conversion, main lumped product selectivity-yield, and catalyst stability) and on coke de activation. Used catalysts have been analyzed using several characterization techniques: TPD-N2/TPO, HeTPD-GC/MS, soluble coke extraction, FTIR, and FT-ICR MS spectroscopies.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.subjectcatalysis technologyes_ES
dc.subjectchemical processeses_ES
dc.subjectindustrial processeses_ES
dc.subjecttecnología de catálisises_ES
dc.subjectprocesos químicoses_ES
dc.subjectprocesos industrialeses_ES
dc.titleCatalytic pathwayz and deactivation in alternative sources of fuel production: butene oligomerizaton and ship/shale-gasoils crackinges_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holder(c)2023 SEPIDEH IZADDOUST
dc.identifier.studentID904011es_ES
dc.identifier.projectID21143es_ES
dc.departamentoesIngeniería químicaes_ES
dc.departamentoeuIngeniaritza kimikoaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record