dc.contributor.author | De la Sen Parte, Manuel | |
dc.date.accessioned | 2012-01-18T19:06:18Z | |
dc.date.available | 2012-01-18T19:06:18Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Discrete Dynamics in Nature and Society 2011 : (2011) // Article ID 568072 | es |
dc.identifier.issn | 1026-0226 | |
dc.identifier.uri | http://hdl.handle.net/10810/6252 | |
dc.description.abstract | A set of np(>= 2)-cyclic and either continuous or contractive self-mappings, with at least one of them being contractive, which are defined on a set of subsets of a Banach space, are considered to build a composed self-mapping of interest. The existence and uniqueness of fixed points and the existence of best proximity points, in the case that the subsets do not intersect, of such composed mappings are investigated by stating and proving ad hoc extensions of several Krasnoselskii-type theorems. | es |
dc.description.sponsorship | Ministerio de Educación DPI2009-07197 y Gobierno Vasco IT378-10 SAIOTEK S-PE08UN15
09UN12 | es |
dc.language.iso | eng | es |
dc.publisher | Hindawi Publishing Corporation | es |
dc.relation | info:eu-repo/grantAgreement/MICINN/DPI2009-07197 | |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.subject | proximity points | es |
dc.subject | convergence | es |
dc.subject | existence | es |
dc.title | On the Extensions of Krasnoselskii-Type Theorems to p-Cyclic Self-Mappings in Banach Spaces | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Copyright © 2011 M. De la Sen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | es |
dc.relation.publisherversion | http://www.hindawi.com/journals/ddns/2011/568072/ | es |
dc.identifier.doi | 10.1155/2011/568072 | |
dc.departamentoes | Electricidad y electrónica | es_ES |
dc.departamentoeu | Elektrizitatea eta elektronika | es_ES |
dc.subject.categoria | MODELING AND SIMULATION | |