Show simple item record

dc.contributor.authorQuijada Van den Berghe, Marina ORCID
dc.contributor.authorBabaze Aizpurua, Antton
dc.contributor.authorAizpurua Iriazabal, Francisco Javier
dc.contributor.authorBorisov, Andrei G.
dc.date.accessioned2024-01-09T19:07:06Z
dc.date.available2024-01-09T19:07:06Z
dc.date.issued2023-10
dc.identifier.citationACS Photonics 10(11) : 3963-3975 (2023)es_ES
dc.identifier.issn2330-4022
dc.identifier.urihttp://hdl.handle.net/10810/63834
dc.description.abstractThe spin and orbital angular momentum carried by electromagnetic pulses open new perspectives to control nonlinear processes in light–matter interactions, with a wealth of potential applications. In this work, we use time-dependent density functional theory (TDDFT) to study the nonlinear optical response of a free-electron plasmonic nanowire to an intense, circularly polarized electromagnetic pulse. In contrast to the well-studied case of the linear polarization, we find that the nth harmonic optical response to circularly polarized light is determined by the multipole moment of order n of the induced nonlinear charge density that rotates around the nanowire axis at the fundamental frequency. As a consequence, the frequency conversion in the far field is suppressed, whereas electric near fields at all harmonic frequencies are induced in the proximity of the nanowire surface. These near fields are circularly polarized with handedness opposite to that of the incident pulse, thus producing an inversion of the spin angular momentum. An analytical approach based on general symmetry constraints nicely explains our numerical findings and allows for generalization of the TDDFT results. This work thus offers new insights into nonlinear optical processes in nanoscale plasmonic nanostructures that allow for the manipulation of the angular momentum of light at harmonic frequencies.es_ES
dc.description.sponsorshipWe acknowledge financial support from project IT1526–22 of the Department of Education of the Basque Government, and projects PID2019–107432GB-I00 and PID2022–139579NB-I00, funded by MCIN/AEI/10.13039/501100011033 and “FEDER Una manera de hacer Europa”.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019–107432GB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2022–139579NB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectnonlinear opticses_ES
dc.subjectlight polarizationes_ES
dc.subjectcircularly polarized lightes_ES
dc.subjecthigh-harmonic generationes_ES
dc.subjectplasmonic nanostructurees_ES
dc.subjecttime-dependent density functional theoryes_ES
dc.titleNonlinear Optical Response of a Plasmonic Nanoantenna to Circularly Polarized Light: Rotation of Multipolar Charge Density and Near-Field Spin Angular Momentum Inversiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/full/10.1021/acsphotonics.3c00783es_ES
dc.identifier.doi10.1021/acsphotonics.3c00783
dc.departamentoesElectricidad y electrónicaes_ES
dc.departamentoesFísica aplicada Ies_ES
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoeuElektrizitatea eta elektronikaes_ES
dc.departamentoeuFisika aplikatua Ies_ES
dc.departamentoeuMatematika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by American Chemical Society. This publication is licensed under
CC-BY 4.0.
Except where otherwise noted, this item's license is described as © 2023 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.