Show simple item record

dc.contributor.authorFortuin, Brigette Althea
dc.contributor.authorOtegi Bordege, Jon
dc.contributor.authorLópez del Amo, Juan Miguel
dc.contributor.authorRodríguez Peña, Sergio
dc.contributor.authorMeabe Iturbe, Leire
dc.contributor.authorManzano Moro, Hegoi ORCID
dc.contributor.authorMartínez Ibáñez, María
dc.contributor.authorCarrasco Rodríguez, Javier
dc.date.accessioned2024-01-19T18:23:29Z
dc.date.available2024-01-19T18:23:29Z
dc.date.issued2023-09
dc.identifier.citationPhysical Chemistry Chemical Physics 25(36) : 25038-25054 (2023)es_ES
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/10810/64150
dc.description.abstractModel validation of a well-known class of solid polymer electrolyte (SPE) is utilized to predict the ionic structure and ion dynamics of alternative alkali metal ions, leading to advancements in Na-, K-, and Cs-based SPEs for solid-state alkali metal batteries. A comprehensive study based on molecular dynamics (MD) is conducted to simulate ion coordination and the ion transport properties of poly(ethylene oxide) (PEO) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt across various LiTFSI concentrations. Through validation of the MD simulation results with experimental techniques, we gain a deeper understanding of the ionic structure and dynamics in the PEO/LiTFSI system. This computational approach is then extended to predict ion coordination and transport properties of alternative alkali metal ions. The ionic structure in PEO/LiTFSI is significantly influenced by the LiTFSI concentration, resulting in different lithium-ion transport mechanisms for highly concentrated or diluted systems. Substituting lithium with sodium, potassium, and cesium reveals a weaker cation-PEO coordination for the larger cesium-ion. However, sodium-ion based SPEs exhibit the highest cation transport number, indicating the crucial interplay between salt dissociation and cation-PEO coordination for achieving optimal performance in alkali metal SPEs.es_ES
dc.description.sponsorshipThe research was supported by funding as a part of the DESTINY PhD program, funded by the European Union's Horizon2020 research and innovation program under the Marie Skłodowska-Curie Actions COFUND (Grant No. 945357), and funding through the Basque Government PhD Grant. The authors also acknowledge funding from ‘Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco’ (Grant No. IT1358-22), the Basque Government (PRE_2022_1_0034), and thank SGI/IZO-SGIker UPV/EHU for providing supercomputing resources.es_ES
dc.language.isoenges_ES
dc.publisherRSCes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/945357es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.titleSynergistic theoretical and experimental study on the ion dynamics of bis(trifluoromethanesulfonyl)imide-based alkali metal salts for solid polymer electrolyteses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported License.es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2023/CP/d3cp02989aes_ES
dc.identifier.doi10.1039/d3cp02989a
dc.contributor.funderEuropean Commission
dc.departamentoesFísicaes_ES
dc.departamentoeuFisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported License.
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported License.