Show simple item record

dc.contributor.authorBidegain Cancer, Gorka
dc.contributor.authorEric, Powell
dc.contributor.authorJohn, Klinck
dc.contributor.authorTal, Ben-Horin
dc.contributor.authorEileen, Hofmann
dc.date.accessioned2024-01-30T15:36:21Z
dc.date.available2024-01-30T15:36:21Z
dc.date.issued2016-04
dc.identifier.citationEcosphere 7(4) : (2016) // Article ID e01286es_ES
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttp://hdl.handle.net/10810/64463
dc.description.abstractDisease-causing organisms can have significant impacts on marine species and communities. However, the dynamics that underlie the emergence of disease outbreaks in marine ecosystems still lack the equivalent level of description, conceptual understanding, and modeling context routinely present in the terrestrial systems. Here, we propose a theoretical basis for modeling the transmission of marine infectious diseases (MIDs) developed from simple models of the spread of infectious disease. The models represent the dynamics of a variety of host–pathogen systems including those unique to marine systems where transmission of disease is by contact with waterborne pathogens both directly and through filter-feeding processes. Overall, the analysis of the epizootiological models focused on the most relevant processes that interact to drive the initiation and termination of epizootics. A priori, systems with multi-step disease infections (e.g., infection-death-particle release-filtration-transmission) reduced dependence on individual parameters resulting in inherently slower transmissions rates. This is demonstrably not the case; thus, these alternative transmission pathways must also considerably increase the rates of processes involved in transmission. Scavengers removing dead infected animals may inhibit disease spread in both contact-based and waterborne pathogen-based diseases. The capacity of highly infected animals, both alive and dead, to release a substantial number of infective elements into the water column, making them available to suspension feeders results in such diseases being highly infective with a very small “low-abundance refuge”. In these systems, the body burden of pathogens and the relative importance between the release and the removal rate of pathogens in the host tissue or water column becomes paramount. Two processes are of potential consequence inhibiting epizootics. First, large water volumes above the benthic susceptible populations can function as a sink for pathogens. Second, unlike contact-based disease models in which an increase in the number of susceptible individuals in the population increases the likelihood of transmission and epizootic development, large populations of filter feeders can reduce this likelihood through the overfiltration of infective particles.es_ES
dc.description.sponsorshipThis investigation was funded by the NSF Evolution and Ecology of Infectious Diseases (EEID) Program Grant # OCE-1216220. We appreciate this support.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.subjectbasic reproduction numberes_ES
dc.subjectepizootiologyes_ES
dc.subjectdisease ecologyes_ES
dc.subjecthost–pathogen modelses_ES
dc.subjectwaterborne pathogenses_ES
dc.titleMarine infectious disease dynamics and outbreak thresholds: contact transmission, pandemic infection, and the potential role of filter feederses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2016 Bidegain et al. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.es_ES
dc.relation.publisherversionhttps://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.1286es_ES
dc.identifier.doi10.1002/ecs2.1286
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoeuMatematika aplikatuaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2016 Bidegain et al.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as © 2016 Bidegain et al. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.