Show simple item record

dc.contributor.authorPrieto Pérez, Daniel
dc.contributor.authorArranz Juárez, Kristina Arantxa
dc.contributor.authorUrruchurtu Gutiérrez, Iñaki ORCID
dc.contributor.authorNavarro Adorno, Enrique
dc.contributor.authorUrrutia Barandika, Miren Begoñe
dc.contributor.authorIbarrola Bellido, Irrintzi
dc.date.accessioned2024-01-31T17:09:05Z
dc.date.available2024-01-31T17:09:05Z
dc.date.issued2020-09
dc.identifier.citationFrontiers in Marine Science 7 : (2020) // Article ID 577421es_ES
dc.identifier.issn2296-7745
dc.identifier.urihttp://hdl.handle.net/10810/64510
dc.description.abstractThe aim of this study was to ascertain if the capacity for acute and chronic compensation of thermal effects on physiological rates represents a trait contributing to inter-individual growth rate differences in the mussel Mytilus galloprovincialis. Juvenile mussels (10– 11 mm shell length) were collected, transported to the laboratory, and divided into two groups: one group was maintained at 20 C (warm treatment), and the other at 10 C (cold treatment). The mussels were reared at these two temperatures (continuously fed), until clear size differences allowed us to select fast- (F) and slow (S)-growing individuals from both groups (F20/S20 at 20 C and F10/S10 at 10 C). Selected F and S mussels were then exposed to three experimental temperatures (10, 15, and 20 C), and the time-course of their response, in terms of clearance rate (CR: L/h) and routine oxygen consumption (VO2: mLO2/h), was monitored. The overall growth rate of mussels in the warm treatment group was significantly higher than in the cold treatment group. For both treatments, significant differences were found in key physiological parameters between F and S mussels: F mussels had a higher CR and a larger gill surface area than their S counterparts. Although no significant differences in the thermal sensitivity of the clearance or metabolic rates were observed between F20 and S20 mussels reared at 20 C, when exposed to acute temperature changes, experiments with mussels reared at 10 C revealed a different outcome: in response to acute warming (from 10 C to 15 and 20 C), F10 were capable of compensating for the thermal effect on CR and VO2; however, no such compensatory response was observed in S10. We conclude that two significant factors contribute to endogenous differences in the growth rate of mussels: (i) the capacity to exhibit intense filtering activity, which appears to be functionally correlated with the gill surface area and (ii) the capacity to compensate for the effects of temperature on filtration and metabolic rate. The second trait does not appear to make a significant contribution to the inter-individual size-differentiation observed in mussels maintained in warm environments, but explains a significant proportion of inter-individual growth rate differences in cold environments.es_ES
dc.description.sponsorshipDP was funded by an FPI grant from the Basque Government. A part of this study was also funded by the Spanish Ministry of Economy and Competitiveness (Reference: AGL2013-49144-C3-1-R).es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/AGL2013-49144-C3-1-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectgrowthes_ES
dc.subjectClearance ratees_ES
dc.subjectmetabolic ratees_ES
dc.subjecttemperaturees_ES
dc.subjectthermal compensationes_ES
dc.subjectMytilus galloprovincialises_ES
dc.titleVariable Capacity for Acute and Chronic Thermal Compensation of Physiological Rates Contributes to Inter-Individual Differences in Growth Rate in Mussels (Mytilus galloprovincialis)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2020 Prieto, Arranz, Urrutxurtu, Navarro, Urrutia and Ibarrola. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fmars.2020.577421/fulles_ES
dc.identifier.doi10.3389/fmars.2020.577421
dc.departamentoesGenética, antropología física y fisiología animales_ES
dc.departamentoeuGenetika,antropologia fisikoa eta animalien fisiologiaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 Prieto, Arranz, Urrutxurtu, Navarro, Urrutia and Ibarrola. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2020 Prieto, Arranz, Urrutxurtu, Navarro, Urrutia and Ibarrola. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.