Show simple item record

dc.contributor.authorHernando Rodríguez, Leticia ORCID
dc.contributor.authorMendiburu Alberro, Alexander
dc.contributor.authorLozano Alonso, José Antonio
dc.date.accessioned2024-02-11T10:35:29Z
dc.date.available2024-02-11T10:35:29Z
dc.date.issued2019-07
dc.identifier.citationProceedings of the Genetic and Genetic and Evolutionary Computation Conference (GECCO'19) : 266-273 (2019)es_ES
dc.identifier.isbn978-1-4503-6111-8
dc.identifier.urihttp://hdl.handle.net/10810/66011
dc.description.abstract[EN] The aim of this paper is to introduce the concept of intersection between combinatorial optimisation problems. We take into account that most algorithms, in their machinery, do not consider the exact objective function values of the solutions, but only a comparison between them. In this sense, if the solutions of an instance of a combinatorial optimisation problem are sorted into their objective function values, we can see the instances as (partial) rankings of the solutions of the search space. Working with specific problems, particularly, the linear ordering problem and the symmetric and asymmetric traveling salesman problem, we show that they can not generate the whole set of (partial) rankings of the solutions of the search space, but just a subset. First, we characterise the set of (partial) rankings each problem can generate. Secondly, we study the intersections between these problems: those rankings which can be generated by both the linear ordering problem and the symmetric/asymmetric traveling salesman problem, respectively. The fact of finding large intersections between problems can be useful in order to transfer heuristics from one problem to another, or to define heuristics that can be useful for more than one problem.es_ES
dc.language.isoenges_ES
dc.publisherAssociation for Computing Machineryes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectpermutation-based combinatorial optimisation problemses_ES
dc.subjectrankingses_ES
dc.subjecttraveling salesman problemes_ES
dc.subjectlinear ordering problemes_ES
dc.titleCharacterising the rankings produced by combinatorial optimisation problems and finding their intersections.es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder© 2019 American Chemical Society
dc.relation.publisherversionhttps://dl.acm.org/doi/10.1145/3321707.3321843
dc.identifier.doi10.1145/3321707.3321843
dc.departamentoesMatemáticas
dc.departamentoesCiencia de la computación e inteligencia artificial
dc.departamentoeuMatematika
dc.departamentoeuKonputazio zientziak eta adimen artifiziala


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record