Show simple item record

dc.contributor.authorViar Antuñano, Nerea ORCID
dc.contributor.authorAgirre Arisketa, Ion
dc.contributor.authorGandarias Goikoetxea, Iñaki
dc.date.accessioned2024-02-11T17:10:04Z
dc.date.available2024-02-11T17:10:04Z
dc.date.issued2023-12-08
dc.identifier.citationChemical Engineering Journal Volume 480 : (2024) // Article ID 147873
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.urihttp://hdl.handle.net/10810/66035
dc.description.abstractThe integrated liquid phase process for producing furfuryl alcohol involves three stages: i) liquid–liquid extraction for recovering furfural from the aqueous solution obtained after a conventional steam-stripping hydrolysis reactor, ii) the hydrogenation reaction, and iii) the final purification. The reaction kinetics employed in the modelling are obtained experimentally. 2-methyltetrahydrofuran is the selected green solvent, and it has a high partition coefficient and stability under hydrogenating conditions. A commercial CuZnAl catalyst is used for the first time in the liquid phase furfural hydrogenation reaction, recording very high furfuryl alcohol selectivity even at complete conversion. A dual-site Langmuir-Hinshelwood model is developed and validated. An original aspect of this model is the kinetic effect of the low water content (0–5 wt%) remaining in the solvent after extraction. Water reduces the reaction rate by competing for active sites with furfural and furfuryl alcohol, without promoting other side-reactions. The optimization of the process leads to very high yields of furfuryl alcohol (97%) and a net production of 2-methyltetrahydrofuran even after recirculation and solvent losses. The process shows preliminary economic viability, with a minimum selling price for furfuryl alcohol of around 1,300 $/t; a competitive value only 30% higher than the furfural price considered in the analysis. Moreover, in contrast to current industrial processes that use copper chromite catalysts, the one developed here has environmental benefits, as it avoids the prior need for energy-intensive furfural-water distillation, eliminates toxic catalyst waste, and co-generates a green solvent.es_ES
dc.description.sponsorshipThis work was supported by the University of the Basque Country (UPV/EHU), the European Union, through the European Regional Development Fund, the Spanish National Research Agency - Agencia Estatal de Investigación: PID-2021-122736OB-C43), and the Basque Government (Project IT1554-22).
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectkinetic studyes_ES
dc.subjectLangmuir–Hinshelwoodes_ES
dc.subjectfurfuryl alcoholes_ES
dc.subjectcopper catalystes_ES
dc.subjectprocess intensificationes_ES
dc.subjectbiorefineryes_ES
dc.titleProcess design, kinetics, and techno-economic assessment of an integrated liquid phase furfural hydrogenation processes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1385894723066056
dc.identifier.doi10.1016/j.cej.2023.147873
dc.departamentoesIngeniería química y del medio ambiente
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritza


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license