Show simple item record

dc.contributor.authorEstévez Sanz, Julián ORCID
dc.contributor.authorNuñez Larrañaga, Endika
dc.contributor.authorLópez Guede, José Manuel ORCID
dc.contributor.authorGarate Zubiaurre, Gorka
dc.date.accessioned2024-05-14T08:53:21Z
dc.date.available2024-05-14T08:53:21Z
dc.date.issued2024-05-10
dc.identifier.citationAerospace Science and Technology 150 : (2024) // Art. ID 10919es_ES
dc.identifier.issn1270-9638
dc.identifier.urihttp://hdl.handle.net/10810/67931
dc.description.abstractIn this article, we propose a reciprocal collision avoidance system for autonomous drones, based on computer vision and using relative positioning in an indoor environment. This dynamic environment represents a demanding challenge, but it is crucial for any future existence of multiple drones operating in urban areas. We use commercial AR Drone 2.0 robots, which represent that our proposal is suitable for low-cost equipment. In our case, we attempt to achieve the collision avoidance of two drones that fly one towards the other and react online autonomously to signals received by their computer vision systems with a decentralized control strategy. We test this in four different experiments with demanding conditions. For this purpose, we get the camera signal of the onboard drones and tune their behavior to react smoothly and precisely. We report encouraging positive results and provide the code we use in the experiments for replication.es_ES
dc.description.sponsorshipMICIN project PID2020-116346GB-I00 // Basque Government as the Grupo de Inteligencia Computacional, Universidad del País Vasco, UPV/EHU with code IT1689-22. // Basque Government, Elkartek projects KK-2022/00051 and KK-2021/00070. Fundacion Vitoria-Gasteiz Araba Mobility Labes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-116346GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectquadrotores_ES
dc.subjectcollision-avoidancees_ES
dc.subjectRCAes_ES
dc.subjectautonomous navigationes_ES
dc.titleA low-cost vision system for online reciprocal collision avoidance with UAVses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1270963824003225es_ES
dc.identifier.doi10.1016/j.ast.2024.109190
dc.departamentoesIngeniería mecánicaes_ES
dc.departamentoeuIngeniaritza mekanikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).
Except where otherwise noted, this item's license is described as © 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).