Show simple item record

dc.contributor.authorGarrido Hernández, Izaskun ORCID
dc.contributor.authorLekube Garagarza, Jon
dc.contributor.authorMzoughi, Fares
dc.contributor.authorAboutalebi, Payam
dc.contributor.authorAhmad, Irfan
dc.contributor.authorCayuela Padilla, Salvador
dc.contributor.authorGarrido Hernández, Aitor Josu ORCID
dc.date2025-11-01
dc.date.accessioned2024-05-16T14:40:33Z
dc.date.available2024-05-16T14:40:33Z
dc.date.issued2023-11-01
dc.identifier.citation27th International Conference on Circuits, Systems, Communications and Computers (CSCC), Rhodes (Rodos) Island, Greece, 2023 : 1-7 (2023)es_ES
dc.identifier.isbn979-8-3503-3759-4
dc.identifier.urihttp://hdl.handle.net/10810/67999
dc.description.abstractWave excitations cause structural vibrations on the Oscillating Water Columns (OWC) lowering the power generated and reducing the life expectancy. The problem of generator deterioration has been considered for the Mutriku MOWC plant and a machine learning-based approach for prognosis and fault characterization has been proposed. In particular, the use of k-Nearest Neighbors (kNN) models for predicting the time to failure of OWC generators has been proposed. The analysis is based on data collected from sensors that measure various operational parameters of the turbines. The results demonstrate that the proposed kNN model is an excellent choice for reducing maintenance costs by enabling maintenance scheduling months in advance. The model's high accuracy in predicting generator failures allows for timely and cost-effective maintenance, preventing costly breakdowns and improving turbine efficiency. These results highlight the potential of machine learning-based approaches for addressing maintenance challenges in the energy sector and underscore the importance of proactive maintenance strategies in reducing operational costs and maximizing energy production.es_ES
dc.description.sponsorshipBasque Government Project IT555-22. PID2021-123543OB-C21 and PID2021-123543OB-C22 (MCIN/AEI/10.13039/501100011033/FEDER, UE). MAZAM22/15 and MARSA22/09 (UPV-EHU/MIU/Next Generation, EU) and PIF20/299 (UPV/EHU)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-123543OB-C21es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-123543OB-C22es_ES
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.subjectmachine learninges_ES
dc.subjectoscillating water columnes_ES
dc.subjectwave energyes_ES
dc.titleA Machine-Learning Approach for Prognosis of Oscillating Water Column Wave Generatorses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder© 2023, IEEEes_ES
dc.relation.publisherversionhttps://www.computer.org/csdl/proceedings-article/cscc/2023/375900a001/1TammYgKPnies_ES
dc.identifier.doi10.1109/CSCC58962.2023.00009
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record