Show simple item record

dc.contributor.authorMartín, Pablo
dc.contributor.authorGaitero Redondo, Juan José
dc.contributor.authorMéndez Aretxabaleta, Xabier
dc.contributor.authorQomi, Mohammad Javad Abdolhosseini
dc.contributor.authorManzano Moro, Hegoi ORCID
dc.date.accessioned2024-05-16T14:46:22Z
dc.date.available2024-05-16T14:46:22Z
dc.date.issued2024-06-09
dc.identifier.citationCement and Concrete Research 180 : (2024) // Article ID 107502es_ES
dc.identifier.issn0008-8846
dc.identifier.issn1873-3948
dc.identifier.urihttp://hdl.handle.net/10810/68000
dc.description.abstractUnderstanding the mechanism that controls cement hydration and its stages is a long-standing challenge. Over a decade ago, the mineral dissolution theory was adopted from geochemistry to explain the hydration rate evolution of alite. The theory is not fully accepted by the community and deserves further investigation. In this work, we apply Kinetic Monte Carlo (KMC) simulations with the mineral dissolution theory as a conceptual framework to investigate and discuss alite dissolution. We build a Kossel crystal model system and parameterize the dissolution activation energies and frequencies based on experimental data. The resulting KMC model is capable of reproducing the dissolution rate and activation energies as a function of the dissolution free energy. The simulations indicate that mineral dissolution theory easily explains the induction and acceleration stages due to a continuous increase of the reactive area as the etch pits open. However, the deceleration stage is hardly reconcilable with the mechanism suggested in the literature, i.e. dislocation coalescence. Still, within the mineral dissolution theory umbrella, we propose and discuss an alternative mechanism based on dislocation exhaustion.es_ES
dc.description.sponsorshipThe authors would like to acknowledge funding from ‘Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco’ (Grant No. IT1458-22), the Transnational Common Laboratory ‘Aquitaine- Euskadi Network in Green Concrete and Cement-based Materials’ (LTCGreen Concrete) and the technical and human support provided by the Scientific Computing Service of SGIker (UPV/EHU/ERDF, EU). P.M. also acknowledges the postdoctoral fellowship ‘Margaritas Salas scholarship NEXT GENERATION EU.’ from ‘ministerio de universidades de España’. MJAQ acknowledges funding from the United States’ National Science Foundation under awards CMMI-2145537 and CMMI-2103125.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectkinetic Monte Carloes_ES
dc.subjectdissolution mechanismes_ES
dc.subjectC3Ses_ES
dc.subjectalitees_ES
dc.subjectdislocationses_ES
dc.subjectdissolution ratees_ES
dc.subjectactivation energyes_ES
dc.titleA kinetic Monte Carlo study of the C3S dissolution mechanismes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by- nc/4.0/).es_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0008884624000838es_ES
dc.identifier.doi10.1016/j.cemconres.2024.107502
dc.departamentoesFísicaes_ES
dc.departamentoesFísica aplicada I
dc.departamentoeuFisikaes_ES
dc.departamentoeuFisika aplikatua I


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).
Except where otherwise noted, this item's license is described as © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by- nc/4.0/).