dc.contributor.author | Martín, Pablo | |
dc.contributor.author | Gaitero Redondo, Juan José | |
dc.contributor.author | Méndez Aretxabaleta, Xabier | |
dc.contributor.author | Qomi, Mohammad Javad Abdolhosseini | |
dc.contributor.author | Manzano Moro, Hegoi  | |
dc.date.accessioned | 2024-05-16T14:46:22Z | |
dc.date.available | 2024-05-16T14:46:22Z | |
dc.date.issued | 2024-06-09 | |
dc.identifier.citation | Cement and Concrete Research 180 : (2024) // Article ID 107502 | es_ES |
dc.identifier.issn | 0008-8846 | |
dc.identifier.issn | 1873-3948 | |
dc.identifier.uri | http://hdl.handle.net/10810/68000 | |
dc.description.abstract | Understanding the mechanism that controls cement hydration and its stages is a long-standing challenge. Over a decade ago, the mineral dissolution theory was adopted from geochemistry to explain the hydration rate evolution of alite. The theory is not fully accepted by the community and deserves further investigation. In this work, we apply Kinetic Monte Carlo (KMC) simulations with the mineral dissolution theory as a conceptual framework to investigate and discuss alite dissolution. We build a Kossel crystal model system and parameterize the dissolution activation energies and frequencies based on experimental data. The resulting KMC model is capable of reproducing the dissolution rate and activation energies as a function of the dissolution free energy. The simulations indicate that mineral dissolution theory easily explains the induction and acceleration stages due to a continuous increase of the reactive area as the etch pits open. However, the deceleration stage is hardly reconcilable with the mechanism suggested in the literature, i.e. dislocation coalescence. Still, within the mineral dissolution theory umbrella, we propose and discuss an alternative mechanism based on dislocation exhaustion. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge funding from ‘Departamento
de Educación, Política Lingüística y Cultura del Gobierno Vasco’ (Grant
No. IT1458-22), the Transnational Common Laboratory ‘Aquitaine-
Euskadi Network in Green Concrete and Cement-based Materials’ (LTCGreen
Concrete) and the technical and human support provided by the
Scientific Computing Service of SGIker (UPV/EHU/ERDF, EU). P.M.
also acknowledges the postdoctoral fellowship ‘Margaritas Salas scholarship
NEXT GENERATION EU.’ from ‘ministerio de universidades de
España’. MJAQ acknowledges funding from the United States’ National
Science Foundation under awards CMMI-2145537 and CMMI-2103125. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | kinetic Monte Carlo | es_ES |
dc.subject | dissolution mechanism | es_ES |
dc.subject | C3S | es_ES |
dc.subject | alite | es_ES |
dc.subject | dislocations | es_ES |
dc.subject | dissolution rate | es_ES |
dc.subject | activation energy | es_ES |
dc.title | A kinetic Monte Carlo study of the C3S dissolution mechanism | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/). | es_ES |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0008884624000838 | es_ES |
dc.identifier.doi | 10.1016/j.cemconres.2024.107502 | |
dc.departamentoes | Física | es_ES |
dc.departamentoes | Física aplicada I | |
dc.departamentoeu | Fisika | es_ES |
dc.departamentoeu | Fisika aplikatua I | |