Show simple item record

dc.contributor.authorChen Chen, Hao
dc.contributor.authorPérez Hoyos, Santiago ORCID
dc.contributor.authorSánchez Lavega, Agustín María ORCID
dc.contributor.authorPeralta Calvillo, Javier
dc.date.accessioned2024-05-24T15:05:21Z
dc.date.available2024-05-24T15:05:21Z
dc.date.issued2023-03
dc.identifier.citationIcarus 392 : (2023) // Article ID 115393es_ES
dc.identifier.issn1090-2643
dc.identifier.issn0019-1035
dc.identifier.urihttp://hdl.handle.net/10810/68155
dc.description.abstractThe ubiquitous dust in the Martian environment plays a key role in its weather and climate: it must be taken into account in the interpretation of remote sensing data and observations, and could pose a potential risk to surface equipment and operations. In this study, we use observations retrieved by the Instrument Context Camera (ICC) onboard the InSight lander to evaluate the accumulation of dust on the camera lens and estimate the size of the deposited dust particles. Dust contamination is revealed as mottled pattern image artefacts on ICC observations. These were detected using a template matching blob detection algorithm and modelled with a first-order optical model to simulate their size and optical density as a function of the particle diameter. The results show a deep decay in the first 70 sols (LS = 295–337°, MY34) during which dust particles deposited at landing were mostly removed. The subsequent gradual decrease and stable behaviour in the number of detected particles is only interrupted by accumulation and removal periods around sols 160 (LS ∼ 23°, MY35) and 800–1100 (LS = 9–150°, MY36). The estimated particle sizes follow a similar trend, with deposited particles due to wind-driven forces (average diameter < 50 μm) being smaller than the ones deposited by other forces during landing, with particles of up to 220 μm of diameter. The results of this study provide an additional source of information for evaluating aeolian dust processes in Mars, with quantitative results on dust accumulation and removal activity, and may contribute to a better determination of dust entrainment threshold models by constraining susceptible dust particle sizes.es_ES
dc.description.sponsorshipThis work was supported by the Spanish project PID2019-109467GB-I00 (MINECO/FEDER, UE), Grupos Gobierno Vasco IT1742-22, and Diputación Foral de Bizkaia - Aula EspaZio Gela. J. Peralta thanks EMERGIA funding from Junta de Andalucía Spain (code: EMERGIA20_00414). The InSight Instrument Context Camera (ICC) observation files and labels used in this study are available at the InSight Cameras Online Data Bundle of NASA Planetary Data System (PDS) Imaging Node (https://pds-imaging.jpl.nasa.gov/data/nsyt/insight_cameras/).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-109467GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectMarses_ES
dc.subjectinSightes_ES
dc.subjectICCes_ES
dc.subjectdust particles on lenses_ES
dc.subjectAeolian transportes_ES
dc.titleCharacterisation of deposited dust particles on Mars insight lander Instrument Context Camera (ICC) lenses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0019103522004857es_ES
dc.identifier.doi10.1016/j.icarus.2022.115393
dc.departamentoesFísica aplicada Ies_ES
dc.departamentoeuFisika aplikatua Ies_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).