Show simple item record

dc.contributor.authorUdaeta Gordón, Joseba
dc.contributor.authorOregui Bengoechea, Mikel
dc.contributor.authorTorre, Francesco
dc.contributor.authorUranga, Nerea
dc.contributor.authorHernáiz, Marta
dc.contributor.authorLucio Castillero, Beatriz
dc.contributor.authorArias Ergueta, Pedro Luis
dc.contributor.authorPalomo del Barrio, Elena
dc.contributor.authorDoppiu, Stefania
dc.date.accessioned2024-07-04T16:33:57Z
dc.date.available2024-07-04T16:33:57Z
dc.date.issued2024-06
dc.identifier.citationACS Applied Materials & Interfaces 16(26) : 33270-33284 (2024)es_ES
dc.identifier.issn1944-8252
dc.identifier.urihttp://hdl.handle.net/10810/68774
dc.description.abstractIn this work, the Na2CO3 of the sodium manganese ferrite thermochemical cycle was substituted by different eutectic or eutectoid alkali carbonate mixtures. Substituting Na2CO3 with the eutectoid (Li0.07Na0.93)2CO3 mixture resulted in faster hydrogen production after the first cycle, shifting the hydrogen production maximum toward shorter reaction times. Thermodynamic calculations and in situ optical microscopy attributed this fact to the partial melting of the eutectoid carbonate, which helps the diffusion of the ions. Unfortunately, all the mixtures exhibit a significant loss of reversibility in terms of hydrogen production upon cycling. Among them, the nonsubstituted Na mixture exhibits the highest reversibility in terms of hydrogen production followed by the 7%Li-Na mixture, while the 50%Li-Na and Li-K-Na mixtures do not produce any hydrogen after the first cycle. The loss of reversibility is attributed to both the formation of undesired phases and sintering, the latter being more pronounced in the eutectic and eutectoid alkali carbonate mixtures, where the melting of the carbonate is predicted by thermodynamics.es_ES
dc.description.sponsorshipThis Project is funded by the Department of Economic Development, Sustainability and Environment of the Basque Government (CICe 2019-KK-2019/00097 and H2BASQUE-KK-2021/00054), and by the Spanish Government (H2-Plan-KC-2021/00002 founded with the Next Generation EU). The authors thank technical and human support provided by SGIker (UPV/EHU/ERDF, EU).es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectthermochemical water splittinges_ES
dc.subjectsodium manganese ferrite cyclees_ES
dc.subjectatomic substitutiones_ES
dc.subjectcarbonationes_ES
dc.subjectdecarbonationes_ES
dc.subjecthydrogen productiones_ES
dc.titleSodium Manganese Ferrite Water Splitting Cycle: Unravelling the Effect of Solid–Liquid Interfaces in Molten Alkali Carbonateses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acsami.4c00549es_ES
dc.identifier.doi10.1021/acsami.4c00549
dc.departamentoesIngeniería química y del medio ambientees_ES
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. Published by American Chemical Society. This publication is licensed under
CC-BY 4.0.
Except where otherwise noted, this item's license is described as © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.