dc.contributor.author | Artetxe Zurutuza, Mikel | |
dc.contributor.author | Labaka Intxauspe, Gorka | |
dc.contributor.author | López Gazpio, Iñigo | |
dc.contributor.author | Agirre Bengoa, Eneko | |
dc.date.accessioned | 2024-07-23T11:22:45Z | |
dc.date.available | 2024-07-23T11:22:45Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | The 22nd Conference on Computational Natural Language Learning: Proceedings of the Conference, October 31 - November 1, 2018 Brussels, Belgium : 282-291 (2018) | es_ES |
dc.identifier.isbn | 978-1-948087-72-8 | |
dc.identifier.uri | http://hdl.handle.net/10810/68988 | |
dc.description.abstract | Following the recent success of word embeddings, it has been argued that there is no such thing as an ideal representation for words, as different models tend to capture divergent and often mutually incompatible aspects like semantics/ syntax and similarity/relatedness. In this paper, we show that each embedding model captures more information than directly apparent. A linear transformation that adjusts the similarity order of the model without any external resource can tailor it to achieve better results in those aspects, providing a new perspective on how embeddings encode divergent linguistic information. In addition, we explore the relation between intrinsic and extrinsic evaluation, as the effect of our transformations in downstream tasks is higher for unsupervised systems than for supervised ones. | es_ES |
dc.description.sponsorship | This research was partially supported by the Spanish MINECO (TUNER TIN2015-65308-C5- 1-R, MUSTER PCIN-2015-226 and TADEEP TIN2015-70214-P, cofunded by EU FEDER), the UPV/EHU (excellence research group), and the NVIDIA GPU grant program. Mikel Artetxe and I ˜nigo Lopez-Gazpio enjoy a doctoral grant from the Spanish MECD. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | ACL | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/TIN2015-65308-C5- 1-R | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/PCIN-2015-226 | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/TIN2015-70214-P | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.holder | (c)2018 The Association for Computational Linguistics, licensed on a Creative Commons Attribution 4.0 International License. | es_ES |
dc.relation.publisherversion | https://doi.org/10.18653/v1/k18-1028 | es_ES |
dc.identifier.doi | 10.18653/v1/K18-1028 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |