Show simple item record

dc.contributor.authorArtetxe Zurutuza, Mikel
dc.contributor.authorLabaka Intxauspe, Gorka ORCID
dc.contributor.authorAgirre Bengoa, Eneko ORCID
dc.date.accessioned2024-10-17T14:09:15Z
dc.date.available2024-10-17T14:09:15Z
dc.date.issued2016
dc.identifier.citationProceedings of the 2016 Conference on Empirical Methods in Natural Language Processing : 2289-2294 (2016)es_ES
dc.identifier.urihttp://hdl.handle.net/10810/69994
dc.description.abstractMapping word embeddings of different languages into a single space has multiple applications. In order to map from a source space into a target space, a common approach is to learn a linear mapping that minimizes the distances between equivalences listed in a bilingual dictionary. In this paper, we propose a framework that generalizes previous work, provides an efficient exact method to learn the optimal linear transformation and yields the best bilingual results in translation induction while preserving monolingual performance in an analogy task.es_ES
dc.description.sponsorshipThis research was partially supported by the European Commision (QTLeap FP7-ICT-2013-10-610516), a Google Faculty Award, and the Spanish Ministry of Economy and Competitiveness (TADEEP TIN2015-70214-P). Mikel Artetxe enjoys a doctoral grant from the Spanish Ministry of Education, Culture and Sports.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleLearning principled bilingual mappings of word embeddings while preserving monolingual invariancees_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder(c) 2016 The authors under the Creative Commons Attribution 4.0 International (CC BY 4.0)es_ES
dc.relation.publisherversionhttps://doi.org/10.18653/v1/D16-1250es_ES
dc.identifier.doi10.18653/v1/D16-1250
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

(c) 2016 The authors under the Creative Commons Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as (c) 2016 The authors under the Creative Commons Attribution 4.0 International (CC BY 4.0)