Show simple item record

dc.contributor.advisorSaniie, Jafar
dc.contributor.advisorGromov, Mikhail
dc.contributor.advisorHerrero Villalibre, Saioa
dc.contributor.authorAlcorta Gascón, Iker
dc.contributor.otherMaster de Ingeniería (Tel902)
dc.contributor.otherIngeniariako Master (Tel902)
dc.date.accessioned2024-10-31T18:47:36Z
dc.date.available2024-10-31T18:47:36Z
dc.date.issued2024-10-31
dc.identifier.urihttp://hdl.handle.net/10810/70278
dc.description.abstractThe proliferation of Internet of Things (IoT) devices has heightened the need for robust security measures to protect against a growing number of cyberattacks. In this project, a Long ShortTerm Memory (LSTM) neural network approach is presented for classifying attacks in IoT networks, leveraging the comprehensive IoT-23 dataset. The objective of the research is to develop an effective Artificial Intelligence (AI) model that accurately identifies various types of network intrusions and anomalies indicating botnet infiltration, thereby enhancing the security posture of IoT environments. The IoT-23 dataset is preprocessed to extract relevant features, and the LSTM model is trained using these inputs. Superior performance is demonstrated by this approach, achieving an accuracy of 98.8% in classifying attacks, thereby improving upon traditional machine learning models. These results underscore the potential of LSTM networks in IoT security applications, offering a scalable and adaptive solution to detect emerging threats. Future work will explore the integration of this model into real-time security systems and its applicability to diverse IoT architectures.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectInternet of Things (IoT)es_ES
dc.subjectartificial intelligence
dc.subjectbotnets
dc.subjectlong short-term memory neural network
dc.subjectIoT-23 dataset
dc.titleLstm-based attack clasification in Iot networkses_ES
dc.typeinfo:eu-repo/semantics/masterThesis
dc.date.updated2024-10-16T10:48:12Z
dc.language.rfc3066es
dc.rights.holderAtribución-NoComercial-SinDerivadas (cc by-nc-nd)
dc.contributor.degreeMáster Universitario en Ingeniería de Telecomunicaciónes_ES
dc.identifier.gaurassign166484-881963


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas (cc by-nc-nd)
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas (cc by-nc-nd)