dc.contributor.author | Elordi Hidalgo, Unai | |
dc.contributor.author | Unzueta Irurtia, Luis | |
dc.contributor.author | Goenetxea Imaz, Jon | |
dc.contributor.author | Sánchez Carballido, Sergio | |
dc.contributor.author | Arganda Carreras, Ignacio | |
dc.contributor.author | Otaegui Madurga, Oihana | |
dc.date.accessioned | 2024-12-03T17:35:34Z | |
dc.date.available | 2024-12-03T17:35:34Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | IEEE Software 38(1) : 81-87 (2021) | es_ES |
dc.identifier.issn | 0740-7459 | |
dc.identifier.issn | 1937-4194 | |
dc.identifier.uri | http://hdl.handle.net/10810/70755 | |
dc.description.abstract | We provide a novel decomposition methodology from the current MLPerf benchmark to the serverless function execution model. We have tested our approach in Amazon Lambda to benchmark the processing capabilities of OpenCV and OpenVINO inference engines. | es_ES |
dc.description.sponsorship | This work has been partially supported by the program ELKARTEK 2019 of the Basque Government under project AUTOLIB. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | benchmark testing | es_ES |
dc.subject | FAA | es_ES |
dc.subject | task analysis | es_ES |
dc.subject | engines | es_ES |
dc.subject | computer architecture | es_ES |
dc.subject | throughput | es_ES |
dc.subject | computational modeling | es_ES |
dc.title | Benchmarking Deep Neural Network Inference Performance on Serverless Environments With MLPerf | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2021 IEEE | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/MS.2020.3030199 | es_ES |
dc.identifier.doi | 10.1109/MS.2020.3030199 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |