Show simple item record

dc.contributor.authorDe La Fuente, M.
dc.contributor.authorGonzález, P.
dc.contributor.authorAzpiroz, I.
dc.contributor.authorMaiza, Mikel
dc.contributor.authorBarrena Orueechebarria, Nagore
dc.contributor.authorQuartulli, M.
dc.date2026-09-05
dc.date.accessioned2024-12-30T20:05:16Z
dc.date.available2024-12-30T20:05:16Z
dc.date.issued2024-09-05
dc.identifier.citationIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium : 7492-7496 (2024)es_ES
dc.identifier.isbn979-8-3503-6032-5
dc.identifier.urihttp://hdl.handle.net/10810/71077
dc.description.abstractThe creation of image classification and segmentation Machine Learning products requires the annotation of different classes by experts as well as the management of large volumes of data. This paper introduces a new methodology to optimize the computational execution and expert-user contribution by introducing a pixel quality indicator and, therefore reducing the number of annotated data used for model training, based on the geometric information of each pixel. The developed pixel-level quality indicator shows beneficial results, as a result of improving semantic segmentation and classification tasks’ performance, validated through the IRIS 1 platform.es_ES
dc.description.sponsorshipVicomtech Foundation, Basque Research and Technology Alliance (BRTA), (Spain); Department of Computer Languages and Systems (UPV/EHU) (Spain)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.titlePixel-Level Quality Indicator for Image Data Annotationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder(c) 2024 IEEEes_ES
dc.relation.publisherversionhttps://doi.org/10.1109/IGARSS53475.2024.10641772es_ES
dc.identifier.doi10.1109/IGARSS53475.2024.10641772
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record