Show simple item record

dc.contributor.authorIturrondobeitia Ellacuria, Maider
dc.contributor.authorAkizu Gardoki, Ortzi
dc.contributor.authorMínguez Gabiña, Rikardo ORCID
dc.contributor.authorLizundia Fernández, Erlantz ORCID
dc.date.accessioned2025-01-21T17:49:39Z
dc.date.available2025-01-21T17:49:39Z
dc.date.issued2021-05-10
dc.identifier.citationACS Sustainable Chemistry & Engineering 9(20) : 7139-7153 (2021)es_ES
dc.identifier.issn2168-0485
dc.identifier.urihttp://hdl.handle.net/10810/71679
dc.description.abstractAprotic lithium–oxygen (Li–O2) batteries are a prominent example of ultrahigh energy density batteries. Although Li–O2 batteries hold a great potential for large-scale electrochemical energy storage and electric vehicles, their implementation is lagging due to the complex reactions occurring at the cathode. Great effort has been applied to find practical cathodes through the incorporation of different materials acting as catalysts. Here we tap into the quantification of the environmental footprint of seven high-performance Li–O2 batteries. The batteries were standardized to feed a 60 kWh electric vehicle. Life cycle assessment (LCA) methodology is applied to determine and compare how different batteries and respective components contribute to environmental footprints, categorized in 18 groups. To get a bigger picture, results are compared with the environmental burdens of a reference lithium ion battery, reference sodium ion battery, and the average value of lithium–sulfur batteries. Overall, Li–O2 batteries present lower environmental burdens in 9 impact categories, with similar impacts in 5 categories in comparison with lithium–sulfur and lithium ion batteries. With an average value of 55.76 kg·CO2 equiv in Global Warming Potential for the whole Li–O2 battery, the cathode is the major contributor, with a relative weight of 44.5%. These results provide a road map to enable the practical design of sustainable aprotic Li–O2 batteries within a circular economy perspective.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectenergy storagees_ES
dc.subjectlithium-oxygen batterieses_ES
dc.subjectlife cycle assessmentes_ES
dc.subjectenvironmental impactes_ES
dc.subjectecodesignes_ES
dc.subjectcircular economyes_ES
dc.titleEnvironmental impact analysis of aprotic Li–O2 batteries based on Life Cycle Assessmentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderCopyright © 2021 American Chemical Society. This publication is licensed under CC-BY 4.0es_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acssuschemeng.1c01554es_ES
dc.identifier.doi10.1021/acssuschemeng.1c01554
dc.contributor.funderBasque Government (IT-1365-19)
dc.contributor.funderUniversity of the Basque Country (GIC-18/22)
dc.departamentoesExpresión grafica y proyectos de ingenieríaes_ES
dc.departamentoeuAdierazpen grafikoa eta ingeniaritzako proiektuakes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright © 2021 American Chemical Society. This publication is licensed under CC-BY 4.0
Except where otherwise noted, this item's license is described as Copyright © 2021 American Chemical Society. This publication is licensed under CC-BY 4.0