Show simple item record

dc.contributor.authorArbelaiz Gallego, Olatz
dc.contributor.authorGurrutxaga Goikoetxea, Ibai ORCID
dc.contributor.authorLojo Novo, Aizea
dc.contributor.authorMuguerza Rivero, Javier Francisco
dc.contributor.authorPérez de la Fuente, Jesús María ORCID
dc.contributor.authorPerona Balda, Iñigo
dc.date.accessioned2025-01-24T17:49:17Z
dc.date.available2025-01-24T17:49:17Z
dc.date.issued2012-10-04
dc.identifier.citationInternational Conference on Knowledge Discovery and Information Retrieval (KDIR 2012). Proceedings 0IC3K : 187-192 (2012)es_ES
dc.identifier.isbn978-989-8565-29-7
dc.identifier.urihttp://hdl.handle.net/10810/71816
dc.description.abstractThere is a need to facilitate access to the required information in the web and adapting it to the users' preferences and requirements. This paper presents a system that, based on a collaborative filtering approach, adapts the web site to improve the browsing experience of the user: it generates automatically interesting links for new users. The system only uses the web log files stored in any web server (common log format) and builds user profiles from them combining machine learning techniques with a generalization process for data representation. These profiles are later used in an exploitation stage to automatically propose links to new users. The paper examines the effect of the parameters of the system on its final performance. Experiments show that the designed system performs efficiently in a database accessible from the web and that the use of a generalization process, specificity in profiles and the use of frequent pattern mining techniques benefit the profile generation phase, and, moreover, diversity seems to help in the exploitation phase.es_ES
dc.language.isoenges_ES
dc.publisherInstitute for Systems and Technologies of Information, Control and Communication (INSTICC)es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectadaptive webes_ES
dc.subjectlink predictiones_ES
dc.subjectuser profilees_ES
dc.subjectcollaborative filteringes_ES
dc.subjectmachine learninges_ES
dc.subjectperformance analysises_ES
dc.titleAdaptation of the user navigation scheme using clustering and frequent pattern mining techiques for profilinges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holderCC BY-NC-ND 4.0es_ES
dc.relation.publisherversionhttps://www.scitepress.org/Link.aspx?doi=10.5220/0004130801870192es_ES
dc.identifier.doi10.5220/0004130801870192
dc.departamentoesArquitectura y Tecnología de Computadoreses_ES
dc.departamentoeuKonputagailuen Arkitektura eta Teknologiaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0