Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Iglesias, Noelia
dc.contributor.authorParis Guerrero, Ignacio
dc.contributor.authorValero, Jorge
dc.contributor.authorCañas Zabala, Lorena
dc.contributor.authorCarretero Guillén, Alejandro
dc.contributor.authorHatje, Klas
dc.contributor.authorZhang, Jitao David
dc.contributor.authorPatsch, Christoph
dc.contributor.authorBritschgi, Markus
dc.contributor.authorGutbier, Simon
dc.contributor.authorSierra Saavedra, Amanda
dc.date.accessioned2025-02-07T16:34:51Z
dc.date.available2025-02-07T16:34:51Z
dc.date.issued2025-02
dc.identifier.citationGlia 73(2) : 330-351 (2025)es_ES
dc.identifier.issn1098-1136
dc.identifier.urihttp://hdl.handle.net/10810/72514
dc.description.abstractPhagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.es_ES
dc.description.sponsorshipThis work was supported by grants from the Spanish Ministry of Science, Innovation, and Universities MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe” (RTI2018-099267-B-I00 and PID2022-136698OB-I00), Basque Government grants (PIBA 2020_1_0030 and IT1473-22), and a BBVA Foundation Leonardo Award (IN[16]_BBM_BAS_0260) to AS. SG was initially supported by a Roche Postdoctoral Fellowship (RPF). IP performed some experiments at Roche as student intern under the Roche Internships of Scientific Exchange (RiSE) program. NRI was supported by a fellowship of the University of the Basque Country EHU/UPV.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-099267-B-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2022-136698OB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectapoptosises_ES
dc.subjectdeoxytubercidines_ES
dc.subjecthtses_ES
dc.subjectmicrogliaes_ES
dc.subjectphagocytosises_ES
dc.subjectscreeninges_ES
dc.subjecttrifluoperazinees_ES
dc.titleA bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 F. Hoffmann-La Roche Ltd and The Author(s). GLIA published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1002/glia.24637es_ES
dc.identifier.doi10.1002/glia.24637
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoesNeurocienciases_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES
dc.departamentoeuNeurozientziakes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2024 F. Hoffmann-La Roche Ltd and The Author(s). GLIA published by Wiley Periodicals LLC.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 F. Hoffmann-La Roche Ltd and The Author(s). GLIA published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.