Show simple item record

dc.contributor.authorGutiérrez Zaballa, Jon
dc.contributor.authorBasterrechea Oyarzabal, Koldobika
dc.contributor.authorEchanove Arias, Francisco Javier ORCID
dc.date.accessioned2025-02-19T17:47:25Z
dc.date.available2025-02-19T17:47:25Z
dc.date.issued2024-09
dc.identifier.citationJournal of Systems Architecture 154 : (2024) // Article ID 103242es_ES
dc.identifier.issn1383-7621
dc.identifier.issn1873-6165
dc.identifier.urihttp://hdl.handle.net/10810/72839
dc.description.abstractAs the deployment of artificial intelligence (AI) algorithms at edge devices becomes increasingly prevalent, enhancing the robustness and reliability of autonomous AI-based perception and decision systems is becoming as relevant as precision and performance, especially in applications areas considered safety-critical such as autonomous driving and aerospace. This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs), particularly focusing on the impact of parameter perturbations produced by single event upsets (SEUs) on convolutional neural networks (CNN) for image semantic segmentation. By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder–decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs and evaluates the consequences of techniques like model pruning and parameter quantization on the robustness of compressed models aimed at embedded implementations. The findings offer valuable insights into the mechanisms underlying SEU-induced failures that allow for evaluating the robustness of DNNs once trained in advance. Moreover, based on the collected data, we propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments. The code used to perform the fault injection (FI) campaign is available at https://github.com/jonGuti13/TensorFI2, while the code to implement proposed techniques is available at https://github.com/jonGuti13/parameterProtection.es_ES
dc.description.sponsorshipBasque Government: PRE_2023_2_0148 Basque Government KK-2023/00090 Spanish Ministry of Science and Innovation: PID2020-115375RB-I00es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-115375RB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectsingle bit upsetses_ES
dc.subjectrobustness evaluationes_ES
dc.subjectmodel compressiones_ES
dc.subjectembedded artificial intelligencees_ES
dc.subjectsemantic segmentationes_ES
dc.titleEvaluating single event upsets in deep neural networks for semantic segmentation: An embedded system perspectivees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licensees_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1383762124001796es_ES
dc.identifier.doi10.1016/j.sysarc.2024.103242
dc.departamentoesTecnología electrónicaes_ES
dc.departamentoesElectricidad y electrónica
dc.departamentoeuTeknologia elektronikoaes_ES
dc.departamentoeuElektrizitatea eta elektronika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
Except where otherwise noted, this item's license is described as © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license