UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Permutationally invariant state reconstruction

Thumbnail
View/Open
1367-2630_14_10_105001.pdf (1.243Mb)
Date
2012-10
Author
Moroder, Tobias
Hyllus, Philipp
Tóth, Géza
Schwemmer, Christian
Niggebaum, Alexander
Gaile, Stefanie
Guehne, Otfried
Weinfurter, Harald
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

New Journal of Physics 14 : (2012) // Article ID 105001
URI
http://hdl.handle.net/10810/11262
Abstract
Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer
Collections
  • Artículos
  • OpenAire

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka