Show simple item record

dc.contributor.authorSalathé, Y.
dc.contributor.authorMondal, M.
dc.contributor.authorOppliger, M.
dc.contributor.authorHeinsoo, J.
dc.contributor.authorKurpiers, P.
dc.contributor.authorPotočnik, A.
dc.contributor.authorMezzacapo, Antonio
dc.contributor.authorLas Heras García, Urtzi
dc.contributor.authorLamata Manuel, Lucas ORCID
dc.contributor.authorSolano Villanueva, Enrique Leónidas ORCID
dc.contributor.authorFilipp, S.
dc.contributor.authorWallraff, A.
dc.date.accessioned2016-04-13T13:16:46Z
dc.date.available2016-04-13T13:16:46Z
dc.date.issued2015-06-17
dc.identifier.citationPhysical Review X 5(2) : (2015) // Article ID 021027es
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/10810/17896
dc.description.abstractSystems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.es
dc.description.sponsorshipThe authors would like to thank Abdufarrukh Abdumalikov and Marek Pechal for helpful discussions. Furthermore, we owe gratitude to Lars Steffen, Arkady Fedorov, Christopher Eichler, Mathias Baur, and Jonas Mlynek who contributed to our experimental setup. We would also like to thank Tim Menke and Andreas Landig for contributions to the calibration software used in the present experiment. We acknowledge financial support from Eidgenossische Technische Hochschule Zurich (ETH Zurich), the Swiss National Science Foundation National Centre of Competence in Research "Quantum Science & Technology," the Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, Ramon y Cajal Grant No. RYC-2012-11391, UPV/EHU Project No. EHUA14/04, UPV/EHU UFI 11/55, and a UPV/EHU PhD grant, and PROMISCE and SCALEQIT European projects.es
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/600927es
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/284566es
dc.relationinfo:eu-repo/grantAgreement/MINECO/FIS2012-36673-C03-02
dc.relationinfo:eu-repo/grantAgreement/MINECO/RYC-2012-11391
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjecttrapped ionses
dc.subjectsuperconducting circuitses
dc.subjectrange interactionses
dc.subjectdynamicses
dc.subjectsystemses
dc.subjectqubitses
dc.subjectcavityes
dc.subjectpropagationes
dc.subjectalgorithmses
dc.subjectstateses
dc.titleDigital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamicses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderThis article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.es
dc.relation.publisherversionhttp://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.021027es
dc.identifier.doi10.1103/PhysRevX.5.021027
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES
dc.subject.categoriaPHYSICS AND ASTRONOMY


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record