UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Number of Catalytic Elements Is Crucial for the Emergence of Metabolic Cores

Thumbnail
View/Open
0007510.pdf (481.6Kb)
Date
2009-10-19
Author
Martínez de la Fuente Martínez, Ildefonso Abel
Vadillo Arroyo, Fernando
Pérez Pinilla, Martín Blas ORCID
Vera López, Antonio
Veguillas Losada, Juan Emilio
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

PLoS ONE 4(10) : (2009) // e7510
URI
http://hdl.handle.net/10810/2763
Abstract
Background: Different studies show evidence that several unicellular organisms display a cellular metabolic structure characterized by a set of enzymes which are always in an active state (metabolic core), while the rest of the molecular catalytic reactions exhibit on-off changing states. This self-organized enzymatic configuration seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. In a recent analysis performed with dissipative metabolic networks (DMNs) we have shown that this global functional structure emerges in metabolic networks with a relatively high number of catalytic elements, under particular conditions of enzymatic covalent regulatory activity. Methodology/Principal Findings: Here, to investigate the mechanism behind the emergence of this supramolecular organization of enzymes, we have performed extensive DMNs simulations (around 15,210,000 networks) taking into account the proportion of the allosterically regulated enzymes and covalent enzymes present in the networks, the variation in the number of substrate fluxes and regulatory signals per catalytic element, as well as the random selection of the catalytic elements that receive substrate fluxes from the exterior. The numerical approximations obtained show that the percentages of DMNs with metabolic cores grow with the number of catalytic elements, converging to 100% for all cases. Conclusions/Significance: The results show evidence that the fundamental factor for the spontaneous emergence of this global self-organized enzymatic structure is the number of catalytic elements in the metabolic networks. Our analysis corroborates and expands on our previous studies illustrating a crucial property of the global structure of the cellular metabolism. These results also offer important insights into the mechanisms which ensure the robustness and stability of living cells.
Collections
  • Artículos

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka